企业AI的”发动机”长啥样?一文看懂AI中台整体架构设计!

1. AI大脑 (技术支撑层)

这是整个架构的核心引擎,提供最底层、最通用的人工智能技术能力。主要包含三大平台:

● RPA流程自动化平台:

○ 功能核心: 自动化执行规则清晰、重复性高的任务,扮演“数字工人”的角色。

○ 目标领域: 覆盖财务(如自动对账)、人事(如简历筛选)、行政(如考勤统计)、客户(如信息录入)、客服(如应答知识库推送)、供应链(如订单处理)、运维(如日志巡检)等。

○ 操作对象: 可模拟键盘鼠标操作网站、处理邮件/消息、读写文档、进行数据核对、计算、录入等。

○ 价值: 降本增效,将员工从繁琐事务中解放出来,专注于高价值工作。

● AI人工智能:

○ 多模态技术能力: 这部分非常详细地列出了AI中台具备的具体技术能力。

■ 语音处理: 语音识别(听懂)、语音合成(说话)、语音转写(文字记录)、语音翻译(跨语言沟通)、声纹识别(身份验证)。

■ 自然语言处理 (NLP): 语义理解(理解意图)、人机交互(对话系统)、文本翻译、行业语库(领域知识库)。

■ 知识图谱 (KG): 实体建模(构建关系)、知识训练(知识输入与更新)、基于图谱的推理和检索。

■ 图像/文字处理: 文字识别 (OCR)(图像转文字)、影像识别(分析图片)、人脸识别(身份/表情识别)、目标检索(图像中找物体)、文字翻译(跨语种处理)、智能分类/检索(信息组织与查找)。

■ 虚拟智能体: 虚拟主播、虚拟客服、全息多维呈现(如数字人)、动态虚实融合(AR/VR结合)。

○ 核心算法引擎: 提供构建和驱动上述能力的底层技术基础。

■ 机器学习/深度学习/神经网络: 各种建模方法,是实现AI智能的基础。

■ 计算引擎: 强大的数据处理和计算能力支持。

■ 模型训练平台: 提供高效开发和迭代AI模型的工具环境。

● IoT物联平台:

○ 功能: 连接和管理大量物理设备,提供运行监控、故障诊断、预警报警、智能检修等能力,是连接物理世界和数字世界的桥梁。

○ 资源集成: 整合了网络资源池、存储资源池、计算资源池(提供基础IT资源),以及智能设备、传感设备、边缘设备、控制设备(物理世界的感知与执行单元)。

○ 作用: 为AI提供实时数据输入源(传感器数据),同时使AI能作用于物理世界(控制设备),支撑边缘智能和物理世界的智能化应用。

2. 应用能力 (能力服务层)

这一层是将底层“AI大脑”的技术能力整合包装,形成可以直接服务于具体业务场景的通用功能模块。它不再是零散的技术点,而是面向特定领域或问题的解决方案集。

● 协同办公: 利用RPA(自动任务)和AI(语音助手、智能处理)技术,打造高效的办公环境。

● 数字员工: 综合运用RPA和AI(智能对话、文档理解、知识图谱)打造自动化或智能化的员工岗位(如智能会议辅助记录与总结、智慧合同审阅与管理、智慧档案管理、智慧客服)。

● 数字经营: 利用数据分析和AI预测模型,构建智能运营系统、智慧管理系统,通过全景动态大屏实时展示业务状态,辅助管理层进行智能决策。

● 智慧园区/医疗/工厂/城市: 代表该平台可支持构建这些垂直领域的智能应用能力(这是具体领域的解决方案集合,图中可能有点重复)。IoT平台在此发挥核心作用(连接设备、监控环境、设备健康)。

● 安全生产: 是智慧工厂等场景下的关键能力,特别强调如工业听诊器、声学成像仪等利用AI分析声学/振动信号进行设备健康监测和预测性维护的能力。

3. 解决方案 (应用落地层)

这一层是平台核心价值的最直接体现。它展示如何将“AI大脑”提供的通用技术能力和“应用能力”层封装好的通用业务能力,具体应用到某个特定行业或解决某个明确业务问题的实例。

● 医疗、工业、智慧园区: 这几个是列举出来的行业领域。

● 实际含义:

○ 智慧医疗方案: 可能包含AI辅助影像诊断(图像处理)、智能病历分析(NLP, KG)、语音录入(语音处理)、智慧药房管理(RPA + IoT)、医疗资源调度优化(数据决策)。

○ 智慧工业方案: 可能包含预测性维护(IoT数据分析 + AI模型)、智能质检(图像识别)、自动化流程(RPA)、智能排产(数据决策)。

○ 智慧园区方案: 可能包含智能安防(人脸识别、目标检索)、设施管理(IoT监控)、能源优化(数据分析)、访客管理(语音助手 + RPA)、智能停车(目标检索)等。

● 开放性: 平台旨在灵活支撑不同行业,这些只是示例。其他如金融、零售、教育等也可基于此平台构建相应解决方案。

架构设计的核心思想

1. 分层解耦: 各层职责清晰(技术->能力->方案),降低复杂性,提高灵活性和复用性。

2. 平台化整合: 避免“烟囱式”AI应用开发,将通用AI技术(RPA, NLP, KG, CV, ML/DL, IoT)整合到一个统一的平台(AI大脑)上进行管理、开发和共享。

3. 能力复用: “应用能力”层将平台能力提炼成可复用的业务组件,避免在开发每个解决方案时都从头搭建基础功能。

4. 场景驱动: 最终的价值通过解决特定行业或业务问题的“解决方案”来体现,强调技术的落地应用。

5. 技术闭环: RPA提供流程自动化,AI提供认知智能,IoT打通物理世界数据流和响应,共同构成完整的智能化体系。

总结:

这张图展示的是一个设计精良的AI中台蓝图。它以强大的“AI大脑”(RPA+AI算法+IoT)为技术底座,构建出模块化、可复用的“应用能力”(协同办公、数字员工等)作为业务服务中间件,最终灵活组装成满足“医疗”、“工业”等各行业特定需求的智能化解决方案。这种设计旨在加速企业智能化转型,降低AI应用开发门槛,提升技术复用的效率和价值。

之前商界有位名人说过:“站在风口,猪都能吹上天”。这几年,AI大模型领域百家争鸣,百舸争流,明显是这个时代下一个风口!

那如何学习大模型&AI产品经理?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

只要你是真心想学AI大模型,我这份资料就可以无偿共享给你学习。大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

如果你也想通过学大模型技术去帮助就业和转行,可以点扫描下方链接👇👇
大模型重磅福利:入门进阶全套104G学习资源包免费分享!
在这里插入图片描述

01.从入门到精通的全套视频教程

包含提示词工程、RAG、Agent等技术点
在这里插入图片描述

02.AI大模型学习路线图(还有视频解说)

全过程AI大模型学习路线

在这里插入图片描述

​​在这里插入图片描述

03.学习电子书籍和技术文档

市面上的大模型书籍确实太多了,这些是我精选出来的

在这里插入图片描述

04.大模型面试题目详解

在这里插入图片描述

在这里插入图片描述

05.这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

所有的视频由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念‌,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势‌,构建起"前沿课程+智能实训+精准就业"的高效培养体系。

课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

在这里插入图片描述
如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!

应届毕业生‌:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能 ‌突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### AI中台的概念 AI中台是一种基于人工智能技术的企业级能力平台,其目标是为企业提供统一的人工智能服务能力。它通过整合算法、算力以及数据资源,形成标准化的服务接口,降低AI技术的应用门槛,提升企业的研发效率和服务质量[^3]。 AI中台的核心在于连接数据与应用场景,通过对数据的加工和建模,将复杂的AI能力抽象化并封装成可复用的服务模块。这种模式能够帮助企业快速构建智能化产品或服务,减少重复开发的成本,并加速业务创新。 --- ### AI中台的架构层次 从整体上看,AI中台通常由以下几个主要部分组成: #### 1. **基础层** 该层主要包括计算资源管理、存储管理和调度系统等功能。这一层负责为整个AI中台提供强大的基础设施支持,例如GPU集群管理、分布式文件系统等。常见的工具和技术包括Kubernetes容器编排技术和TensorFlow Serving部署框架[^1]。 #### 2. **引擎层** 此层专注于实现高效的训练和推理功能,包含多种深度学习框架及其优化版本。具体来说,可以列举如下组件: - 高性能训练和推理引擎:如Alink、MNN、XDL、SQLFLOW、PAI TensorFlow等。 - 自动化机器学习(AutoML)工具:用于简化特征工程、模型选择和超参数调优过程。 这些工具共同构成了一个灵活且扩展性强的技术底座,满足不同类型项目的需求[^1]。 #### 3. **平台层** 这是面向开发者的主要交互界面,集成了完整的生命周期管理流程,包括但不限于: - 数据标注与预处理; - 模型训练与验证; - 性能评估与迭代改进; - API发布与监控运维。 以百度EasyDL为例,这类轻量化平台允许用户无需深厚编程背景即可完成定制化的AI模型创建工作[^1]。 #### 4. **应用层/解决方案层** 最终,在高层面上会针对特定垂直领域设计专门的应用程序或者集成方案。比如智能客服对话机器人、医疗影像诊断辅助系统等等。它们依托于前面提到的基础建设和通用能力来解决实际问题[^2]。 --- ### AI中台的具体实现方式 为了成功实施一套有效的AI中台体系结构,需要考虑多个方面因素: 1. **明确需求边界**:采用领域驱动设计理念(DDD),清晰划分各个子系统的职责范围,避免过度复杂的设计导致维护困难的情况发生[^4]。 2. **选用合适的技术栈**:根据具体的业务场景挑选最适合当前状况下的开源软件库或者是商业产品组合起来作为技术支持手段之一[^1]。 3. **建立完善的数据治理体系**:“智能数据中台”强调的是利用先进的人工智能方法论去挖掘隐藏在庞杂无序的信息海洋里的宝贵财富,因此建立健全的数据治理机制至关重要。 4. **持续运营优化**:除了初始阶段的一次性投入之外,还需要期坚持不断地调整策略方向以便适应外部环境变化带来的新挑战[^3]。 --- ```python # 示例代码展示如何简单初始化一个Docker镜像运行环境 docker run --gpus all -it \ -v /path/to/local/data:/workspace/data \ tensorflow/tensorflow:latest-gpu bash ``` 以上命令展示了在一个Linux服务器环境中启动带有GPU支持的TensorFlow容器实例的方法,这对于测试某些小型实验非常有用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值