一、通用能力评估
在完成模型训练后,您可以通过 llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml 来评估模型效果。
配置示例文件 examples/train_lora/llama3_lora_eval.yaml 具体如下:
### examples/train_lora/llama3_lora_eval.yaml
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft # 可选项
### method
finetuning_type: lora
### dataset
task: mmlu_test # mmlu_test, ceval_validation, cmmlu_test
template: fewshot
lang: en
n_shot: 5
### output
save_dir: saves/llama3-8b/lora/eval
### eval
batch_size: 4
二、 NLG 评估
此外,您还可以通过 llamafactory-cli train examples/extras/nlg_eval/llama3_lora_predict.yaml 来获得模型的 BLEU 和 ROUGE 分数以评价模型生成质量。
配置示例文件 examples/extras/nlg_eval/llama3_lora_predict.yaml 具体如下:
### examples/extras/nlg_eval/llama3_lora_predict.yaml
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
### method
stage: sft
do_predict: true
finetuning_type: lora
### dataset
eval_dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 2048
max_samples: 50
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/predict
overwrite_output_dir: true
### eval
per_device_eval_batch_size: 1
predict_with_generate: true
ddp_timeout: 180000000
同样,您也通过在指令 python scripts/vllm_infer.py --model_name_or_path path_to_merged_model --dataset alpaca_en_demo 中指定模型、数据集以使用 vllm 推理框架以取得更快的推理速度。
三、评估相关参数
参数名称 |
参类型参 |
介绍 |
task |
str |
评估任务的名称,可选项有 mmlu_test, ceval_validation, cmmlu_test |
task_dir |
str |
包含评估数据集的文件夹路径,默认值为 evaluation。 |
batch_size |
int |
每个GPU使用的批量大小,默认值为 4。 |
seed |
int |
用于数据加载器的随机种子,默认值为 42。 |
lang |
str |
评估使用的语言,可选值为 en、 zh。默认值为 en。 |
n_shot |
int |
few-shot 的示例数量,默认值为 5。 |
save_dir |
str |
保存评估结果的路径,默认值为 None。 如果该路径已经存在则会抛出错误。 |
download_mode |
str |
评估数据集的下载模式,默认值为 DownloadMode.REUSE_DATASET_IF_EXISTS。如果数据集已经在则重复使用,否则则下载。 |
四、AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓