NLP论文速读(ICLR 2025)|LLM对齐中的综合基准奖励模型

论文速读|Rmb: Comprehensively Benchmarking Reward Models In LLM Alignment

论文信息:

图片

简介:

      随着大型语言模型(LLMs)在各种应用中的广泛使用,如何使其行为符合人类偏好(即对齐)成为一个关键问题。奖励模型(RMs)在这一对齐过程中起着核心作用,它作为人类偏好的代理,指导LLMs的行为。然而,当前对奖励模型的评估存在局限性:一方面,评估数据的分布有限,无法全面覆盖人类偏好的多样性;另一方面,现有的评估方法(如成对偏好判断)与对齐目标的直接相关性不足,导致评估结果可能无法准确反映奖励模型在下游对齐任务中的实际表现。

      本文旨在解决现有奖励模型评估的不足,提出一个更全面、更细粒度的奖励模型基准(RMB),以更好地评估奖励模型在指导LLMs对齐优化中的有效性。

    &n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值