《RAGFlow》本地部署-创建知识库

RAGFlow 是什么?

RAGFlow 是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。

它的官网也提供了试用的demo,地址是:https://demo.ragflow.io

在这里插入图片描述

我这个是创建了一个知识库的样子,大家如果第一次试用,是没有这个知识库的

本地部署

如果你想在Windows上部署RAGFlow,你要下载一个桌面版的docker,地址是:https://www.docker.com/products/docker-desktop/, 下载安装完在cmd里面敲docker,如果能看到下面的界面,就证明docker已经安装成功了

在这里插入图片描述

如果电脑安装了git,可以直接通过git把代码拉取下来

git clone https://github.com/infiniflow/ragflow.git

如果没有装git,可以直接到https://github.com/infiniflow/ragflow, 把代码下载下来

然后进入到docker文件夹,并启动项目

$ cd ragflow/docker
$ docker compose -f docker-compose.yml up -d

服务器启动成功后再次确认服务器状态

docker logs -f ragflow-server

出现以下界面提示说明服务器启动成功

     ____   ___    ______ ______ __               
    / __ \ /   |  / ____// ____// /____  _      __
   / /_/ // /| | / / __ / /_   / // __ \| | /| / /
  / _, _// ___ |/ /_/ // __/  / // /_/ /| |/ |/ / 
 /_/ |_|/_/  |_|\____//_/    /_/ \____/ |__/|__/  

 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:9380
 * Running on http://x.x.x.x:9380

第一次启动时是这样的界面

如果打开http://127.0.0.1:9380 报404说明RAGFlow 可能并未完全启动成功

在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow

在这里插入图片描述

注册一个账号就可以登录了

RAGFlow创建知识库

先来到个人中心,设置一下模型,我这里用的是OpenAI,将key填进去就可以了,当然也支持其他的模型,大家去申请相应的key就可以了

在这里插入图片描述

点击知识库,写一个名字,点击新增文件上传文件

在这里插入图片描述

接下来就可以聊天了,配置助理

在这里插入图片描述

接下来就可以进行测试了,我进行了测试,感觉效果还可以

### RAGFlow 本地部署教程及知识库配置指南 #### 1. 环境准备 为了成功部署 RAGFlow 并配置知识库,需要先完成必要的环境准备工作。这包括安装 Python、设置虚拟环境以及安装依赖项。推荐使用 Python 版本为 3.8 或更高版本[^2]。 ```bash # 创建并激活虚拟环境 python -m venv ragflow_env source ragflow_env/bin/activate # 安装 pip 工具和其他基础依赖 pip install --upgrade pip setuptools wheel ``` #### 2. 初始化 RagFlow 项目 初始化 RagFlow 项目是整个流程中的重要一步。通过克隆官方仓库或下载预编译包,可以快速启动开发环境。以下是具体操作: ```bash git clone https://github.com/RagFlow/ragflow.git cd ragflow pip install -r requirements.txt ``` 此过程会自动拉取所需的第三方库文件,并将其安装到当前环境中[^1]。 #### 3. 数据导入与索引创建 RAGFlow 的核心功能之一是对文档数据进行处理和存储。为此,需将目标资料上传至指定目录,并调用脚本来生成向量数据库索引。 ```python from ragflow import DocumentLoader, VectorStore loader = DocumentLoader(input_dir="path/to/documents") docs = loader.load() vector_store = VectorStore() vector_store.add_documents(docs) ``` 上述代码片段展示了如何加载文档集合并将它们嵌入到矢量空间中以便后续检索使用。 #### 4. GPU 加速支持 如果希望利用硬件资源提升性能,则可进一步调整参数以启用 NVIDIA CUDA 支持等功能特性。确保显卡驱动程序已更新至最新状态,并验证 PyTorch 是否能够检测到可用设备。 ```python import torch if torch.cuda.is_available(): device = "cuda" else: device = "cpu" print(f"Using {device} as computation backend.") ``` 对于大规模查询场景而言,这种优化措施尤为关键。 #### 5. 测试运行 最后,在确认所有组件均已正确配置之后,即可尝试发起一些简单的请求来检验系统的整体表现情况。 ```bash uvicorn app.main:app --reload ``` 访问 `http://localhost:8000/docs` 即可查看 API 文档界面。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值