[SD实战]实现人物写真背景图像融合,深度剖析蒙版重绘与CN局部重绘实战

在摄影与图像处理领域,人物写真背景图像融合一直是技术难点。传统方法往往难以实现自然且富有艺术感的融合效果。然而,随着深度学习技术的发展,蒙版重绘与CN局部重绘技术为我们提供了全新的思路。本文将带你深入剖析这两种技术的实战应用,探索如何将人物与背景完美融合,实现令人惊叹的艺术效果。
在这里插入图片描述

今天实战介绍SD人物换背景 。在实际写真场景中,涉及切换人物背景图并融合。我们这里使用图生图-蒙版重绘ControlNet
局部重绘
实现背景图的融合。

人物蒙版制作

在这里需要首先安装SD插件:sd-webui-inpaint-anything 插件操作提取蒙版。

插件的安装地址为:(需要的同学可以自行扫描获取)

然后利用sd-webui-inpaint-anything
插件制作并提取人物蒙版,可以根据页面提示操作和精修,然后我们就可以获得精修后的人物蒙版遮挡图像。

人物案例图像

获取人物蒙版

人物写真换背景

上传重绘蒙版

到这一步,我们就可以进入SD图生图 界面,在上传重绘蒙版
标签页,分别上传被切换原始人物写真图像和上一步提取的人物蒙版遮罩。相关配置如下所示:

ControlNet局部重绘

同时,还需要配置ControlNet局部重绘 ,上传背景图像实现人物的融合。这里需要选择局部重绘
inpaint_only+lama 预处理器和control_v11p_sd15_inpaint
ControlNet处理器。配置如下所示:

融合效果

点击生成 按钮,就可以得到相应的融合背景图像:

更多背景融合案例

本文绘图配置如下所示:

• 绘图模型:AWPortrait_v1.4

• 采样方法:DPM++ 2M Karras

• 迭代步数:30步

• 分辨率:512* 768

• 提示词引导系数 (CFG Scale):7

• 放大算法:4x-UltraSharp 2X放大

• 启用ADetailer 修复脸部和手部细节。

本文涉及模型下载地址:(需要的小伙伴可以文末自行扫描获取)

AWPortrait

AgainStyle3_Lotus_荷花荷叶效果 LoRA模型

01

lora:AgainStyle3_Lotus:1,AgainStyle3 Lotus,no
humans,outdoors,scenery,day,white flower,sky,blue sky,sunlight,lotus,still
life,green flower,plant,water,bud,realistic,leaf,lily pad,cloud,

背景图想

融合图像

02

lora:AgainStyle3_Lotus:1,AgainStyle3 Lotus,no
humans,flower,sky,outdoors,day,blue sky,blurry,cloud,scenery,depth of
field,red flower,still life,blurry background,orange
flower,sunlight,water,realistic,lens flare,

背景图想

融合图像

生成图后,如果存在边缘融合不充分的,可以采用图生图0.3~0.5低幅度重绘,并结合tiled diffusion和tiled
VAE插件和ControlNet tile模型进行细节的修复和增强。

资料软件免费放送

次日同一发放请耐心等待

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

请添加图片描述

<think>我们正在讨论的是ComfyUI中使用Qwen Image Edit模型是否支持进行局部。根据用户提供的引用内容,并没有直接提到Qwen Image Edit模型在ComfyUI中是否支持局部。但是,我们可以从引用[2]中得知Qwen-Image模型具有图像图像(I2I)的功能,这通常包括图像编辑任务。 在图像编辑领域,使用进行局部是一种常见的技术,它允许用户指定图像中需要修改的区域(通过),然后模型根据提示在该区域生成新的内容。因此,我们推断Qwen Image Edit模型很可能支持局部,因为这是图像编辑中的基本功能。 然而,由于引用中没有明确说明,我们需要进一步确认。根据一般经验,如果Qwen Image Edit模型是基于扩散模型(如Stable Diffusion)的,那么它通常会支持操作。另外,ComfyUI作为一款支持节点式工作流的UI,通常也支持加载各种模型并配合使用。 因此,我们可以这样回答: 是的,在ComfyUI中使用Qwen Image Edit模型时,通常可以使用进行局部。具体操作步骤可能如下: 1. 加载Qwen Image Edit模型节点。 2. 加载原始图像。 3. 创建(Mask),指定需要的区域。 4. 提供文本提示(Prompt),描述想要在区域生成的内容。 5. 将图像和提示输入到Qwen Image Edit模型节点中,执行生成。 但请注意,由于Qwen Image Edit模型的具体实现细节未在引用中给出,建议查阅官方文档或示例以确认其是否支持局部。 如果用户需要更详细的操作指南,可以进一步提供。 §§相关问题§§ 1. Qwen Image Edit模型在ComfyUI中的具体使用步骤是什么? 2. 除了局部,Qwen Image Edit模型还有哪些图像编辑功能? 3. 如何优化Qwen Image Edit模型在局部中的效果?</think>是的,在ComfyUI中使用Qwen Image Edit模型时,**可以通过实现局部**。以下是关键技术依据和操作要点: ### 技术依据 1. **图像编辑能力** Qwen Image Edit模型基于流匹配(Flow Matching)和普通微分方程(ODE)技术,支持文本到图像(T2I)和图像图像(I2I)任务[^2]。这种架构天然适配操作,因为: - 定义了需要修改的区域(I2I输入) - 文本提示指导内容(T2I控制) 2. **位置编码机制** 类似PhotoDoodle的位置编码用机制(确保编辑区域背景的一致性)[^1],Qwen Image Edit在局部时: - 通过坐标锁定编辑区域 - 自动融合透视和纹理(如边缘平滑、光照匹配) ### ComfyUI操作步骤 ```mermaid graph TB A[加载原始图像] --> B[添加图层] B --> C[指定区域] C --> D[输入文本提示<br>如“将衣服换成红色”] D --> E[运行Qwen Image Edit节点] E --> F[生成局部结果] ``` ### 注意事项 1. **精度要求** - 需精确覆盖目标区域(避免边缘溢出) - 推荐使用软边缘(透明度渐变) 2. **提示词优化** - 需包含上下文关联词(如“背景匹配的红色衣服”) - 避免区域外内容冲突的描述 3. **性能瓶颈** 高分辨率图像需调整以下参数: ```python # ComfyUI节点示例 "qwen_image_edit": { "mask_dilation": 5, # 扩展像素 "blend_strength": 0.7, # 融合强度 "ode_steps": 20 # ODE求解步数(影响细节) } ``` ### 应用场景示例 | 类型 | 文本提示 | 效果 | |----------------|-------------------------|--------------------| | 人脸区域 | “微笑表情” | 修改表情 | | 服装区域 | “丝绸材质晚礼服” | 更换服装材质 | | 背景建筑 | “现代风格玻璃幕墙” | 替换建筑风格 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值