CC47.【C++ Cont】高精度算法(加法和减法)

目录

1.定义

2.算法分析

3.高精度加法

字符串转整型数组

处理进位

错误代码分析

调试发现了问题

修正循环体

提交结果

LeetCode上的一道题

方法1:头插

提交结果

方法2:尾插

提交结果

4.高精度减法

算法

大数和小数的判定

1.字符串长度不相等

2.字符串长度相等

字符串转换为整型数组

模拟竖式减法

处理前导0并打印

完整代码

提交结果


1.定义

当数据的值特别大,各种类型都存不下时,此时就要用高精度算法来计算加减乘除

例如P1601 A+B Problem(高精)题:

给定a,b\leq 10^{500},显然使用unsigned long long是存不下的,需要使用高精度算法

2.算法分析

过程:模拟列竖式计算加减乘除的过程,显然需要使用字符串存储

3.高精度加法

例如给定数字234+567,使用列竖式方法计算,如下:

观察计算过程:从个位开始向更高位计算,还需要处理进位

因此需要将数字字符串逆序后存储到整型数组后,对整型数组进行计算

例如:string s="234",则转化为int s_i={4,3,2}

字符串转整型数组

*注:不需要调用stoi函数,将字符串拆分成单个字符后,将单个字符与'0'相减即可

string s1,s2;
cin >> s1>>s2;
int len1 = s1.size();
int len2 = s2.size();
for (int i=0;i<s1.size();i++)
	s1_to_i[len1 - i - 1] = s1[i] - '0';
for (int j = 0; j < s2.size(); j++)
	s2_to_i[len2 - j - 1] = s2[j] - '0';

输入"234"查看s1_to_i存储的值:

没有问题

处理进位

如果出现进位,对应位相加后,如果>=10,将/10后的值加到下一位,%10后的值作为本位的结果

最后将相加后的结果从后向前输出即可

错误代码分析

#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1e3 + 10;
int ret[N];
int s1_to_i[N];
int s2_to_i[N];
int main()
{
    string s1,s2;
    cin >> s1>>s2;
    int len1 = s1.size();
    int len2 = s2.size();
    for (int i=0;i<s1.size();i++)
	    s1_to_i[len1 - i - 1] = s1[i] - '0';
    for (int j = 0; j < s2.size(); j++)
	    s2_to_i[len2 - j - 1] = s2[j] - '0';
	int k = 0;
	for (; k < max(len1, len2); k++)
	{
		ret[k] += (s1_to_i[k] + s2_to_i[k]) % 10;//有进位,不能直接赋值
		ret[k+1] += (s1_to_i[k] + s2_to_i[k]) / 10;//有进位,不能直接赋值
	}
	if (ret[k] == 0)
		k--;
	for (; k >= 0; k--)
			cout << ret[k];
	return 0;
}

以上代码自测貌似没有问题

但洛谷平台上的提交结果没有过:

分析:

根据洛谷提供的测试用例:

输入:
46546876443156448001
46453168410002134684
正确输出:93000044853158582685

实际输出: 

调试发现了问题

在于不能处理连续的进位,例如:

s1 = "1099";
s2 = "1";

实际输出:

修正循环体

int k = 0;
for (; k < max(len1, len2); k++)
{
	ret[k] += s1_to_i[k] + s2_to_i[k];//对应位相加再加上进位
	ret[k + 1] += ret[k] / 10;//向上进位
	ret[k] %= 10;//保留余数
}

提交结果

LeetCode上的一道题

https://leetcode.cn/problems/add-strings/

给定两个字符串形式的非负整数 num1num2 ,计算它们的和并同样以字符串形式返回。

你不能使用任何內建的用于处理大整数的库(比如 BigInteger), 也不能直接将输入的字符串转换为整数形式。

示例 1:

输入:num1 = "11", num2 = "123"
输出:"134"

示例 2:

输入:num1 = "456", num2 = "77"
输出:"533"

示例 3:

输入:num1 = "0", num2 = "0"
输出:"0"

提示:

  • 1 <= num1.length, num2.length <= 10^4
  • num1num2 都只包含数字 0-9
  • num1num2 都不包含任何前导零

方法1:头插

class Solution {
public:
    string addStrings(string num1, string num2) 
    {
        int end1=num1.size()-1;
        int end2=num2.size()-1;
        int carry=0;
        string ret;
        while (end1>=0&&end2>=0)
        {
            int sum=num1[end1]-'0'+num2[end2]-'0';
            ret=(char)((sum+carry)%10+'0')+ret;
            carry=(sum+carry)/10;
            end1--;
            end2--;
        }
        while (end1>=0)
        {
            int sum=num1[end1]-'0';
            ret=(char)((sum+carry)%10+'0')+ret;
            carry=(sum+carry)/10;
            end1--;
        }
        while (end2>=0)
        {
            int sum=num2[end2]-'0';
            ret=(char)((sum+carry)%10+'0')+ret;
            carry=(sum+carry)/10;
            end2--;
        }
       if (carry>0)
           ret=(char)(carry+'0')+ret;
        return ret;
    }
};

头插时间复杂度高,因此运行速度慢

提交结果

方法2:尾插

领悟三个while的写法

class Solution {
public:
    string addStrings(string num1, string num2) 
    {
        int end1=num1.size()-1;
        int end2=num2.size()-1;
        int carry=0;
        string ret;
        while (end1>=0&&end2>=0)
        {
            int sum=num1[end1]-'0'+num2[end2]-'0';
            ret+=(char)((sum+carry)%10+'0');
            carry=(sum+carry)/10;
            end1--;
            end2--;
        }
        while (end1>=0)
        {
            int sum=num1[end1]-'0';
            ret+=(char)((sum+carry)%10+'0');
            carry=(sum+carry)/10;
            end1--;
        }
        while (end2>=0)
        {
            int sum=num2[end2]-'0';
            ret+=(char)((sum+carry)%10+'0');
            carry=(sum+carry)/10;
            end2--;
        }
       if (carry>0)
           ret+=(char)(carry+'0');
        reverse(ret.begin(),ret.end());
        return ret;
    }
};
提交结果

4.高精度减法

字符串转整型数组实现逻辑和高精度加法相同,不再赘述

算法

要求:必须是大数减小数,例如:123-456要转换为-(456-123)才能模拟竖式减法

大数和小数的判定

1.字符串长度不相等

字符串长度长的为大数,字符串长度短的为小数

2.字符串长度相等

按字典序比较

可以写一个判断函数cmp,如下:

bool cmp(const string& s1,const string& s2)
{
	if (s1.size() < s2.size())
		return true;
	else if (s1.size() > s2.size())
		return false;
	else//s1.size()==s2.size()
		return s1 < s2;//字典序比较
}

//-----------------------------------------------------------
//假设max_s字符串对应的值大于等于min_s字符串对应的值,如果不符合再交换
if (cmp(max_s, min_s))//为真(max_s对应的数字小于min_s)则交换
{
	swap(max_s, min_s);
	cout << "-";//小数减大数,先输出负号
}

测试结果:

其实cmp函数可以写得更简洁些:

bool cmp(const string& s1,const string& s2)
{
	if (s1.size() != s2.size())
		return s1.size() < s2.size();
	else//s1.size()==s2.size()
		return s1 < s2;//字典序比较
}

字符串转换为整型数组

int len1 = max_s.size();
int len2 = min_s.size();
for (int i = 0; i < max_s.size(); i++)
	maxs_to_i[len1 - i - 1] = max_s[i] - '0';
for (int j = 0; j < min_s.size(); j++)
	mins_to_i[len2 - j - 1] = min_s[j] - '0';

模拟竖式减法

如果位数不够减需要借位,借位的处理如下:

如上图,3-8不够减,先写成3-8==-5,借1位 后变成10+(-5)=5

int k = 0;
for (; k < max(len1, len2); k++)
{
	ret[k] += maxs_to_i[k] - mins_to_i[k];//在相减的同时需要处理借位
	if (ret[k] < 0)//结果小于0,则借位
	{
		ret[k + 1] -= 1;
		ret[k] += 10;
	}
}

这样写其实有点问题:如果不改动k的值而直接打印的话,会有前导0,例如:

处理前导0并打印

while (ret[k] == 0)
{
	k--;
}

像上面这样写貌似没有问题:

但如果相减的两个数相等,会有问题,例如下面什么都没显示

修正后的代码:

while (ret[k] == 0 && k!=0)//如果到了最低位(即k==0),停止k--
{
	k--;
}

完整代码

#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1e6 + 10;
int ret[N];
int maxs_to_i[N];
int mins_to_i[N];
bool cmp(const string& s1,const string& s2)
{
	if (s1.size() != s2.size())
		return s1.size() < s2.size();
	else//s1.size()==s2.size()
		return s1 < s2;//字典序比较
}
int main()
{
	string max_s, min_s;
	cin >> max_s >> min_s;
	//假设max_s字符串对应的值大于等于min_s字符串对应的值,如果不符合再交换
	if (cmp(max_s, min_s))//为真(max_s对应的数字小于min_s)则交换
	{
		swap(max_s, min_s);
		cout << "-";//小数减大数,先输出负号
	}
	int len1 = max_s.size();
	int len2 = min_s.size();
	for (int i = 0; i < max_s.size(); i++)
		maxs_to_i[len1 - i - 1] = max_s[i] - '0';
	for (int j = 0; j < min_s.size(); j++)
		mins_to_i[len2 - j - 1] = min_s[j] - '0';
	
	int k = 0;
	for (; k < max(len1, len2); k++)
	{
		ret[k] += maxs_to_i[k] - mins_to_i[k];//在相减的同时需要处理借位
		if (ret[k] < 0)//结果小于0,则借位
		{
			ret[k + 1] -= 1;
			ret[k] += 10;
		}
	}

	while (ret[k] == 0&&k!=0)
	{
		k--;
	}

	for (; k >= 0; k--)
		cout << ret[k];
	return 0;
}

提交结果

https://www.luogu.com.cn/problem/P2142

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhangcoder

赠人玫瑰手有余香,感谢支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值