在这篇中我们需要了解并处理语言模型最为棘手的问题,也就是AI"幻觉”(Hallucination)问题。在大型语言模型和聊天机器人的世界里,“幻觉"现象指的是这些智能系统有时会基于给定的提示,创造出并不存在的信息或事实。简而言之,就是这些先进的AI在对话过程中可能会偶尔"脱轨”,提供与问题无关的回答,或者讲述一些与现实不符的内容。这种现象反映了AI在理解和生成语言时,尽管它们通常表现出色,但有时仍会犯错或产生与期望不符的输出。
这种AI"说胡话"的问题大家如有关注过LLM都见过。如今,大模型厂商各显神通,幻觉缓解手段也是层出不穷。通过Prompt技术在一定程度上可以很好的缓解AI幻觉问题,尽管幻觉现阶段不能避免,但我们可以提高我们prompt技能去有效针对它。本章节将详细介绍LLM幻觉问题和Prompt应对技巧。
何为AI"幻觉”
“幻觉”的含义是:在没有相应的外部或躯体刺激的情况下的感觉知觉,并根据其发生的感觉域进行描述。无论是否了解幻觉的本质,幻觉都可能发生。人工智能幻觉隐喻性地借鉴了这个概念,将人工智能产生的不准确信息描述为“幻觉”。
不知道大家有没有关注最近的论文,有一篇《Hallucination is Inevitable: An Innate Limitation of Large Language Models》,名为幻觉是不可避免的:大型语言模型的内在局限,这标题就已经很炸裂了:
论文表明:幻觉已经被广泛认为是大型语言模型(LLM)的一个显著缺点。到目前为止,这些努力大多是