任何学习过程都需要一个科学合理的学习路线,才能够有条不紊的完成我们的学习目标。
以往的数据开发,需要一定的Java基础和工作经验,门槛高,入门难。今天特别为大家整理了一个全面的Python+大数据学习路线图,帮大家理清思路,攻破难关!
本路线图适合零基础入门数据开发行业的小伙伴,从Python语言入手。
Python语言简单易懂,适合零基础入门,在编程语言排名上升最快,能完成数据挖掘、机器学习、实时计算在内的各种大数据集成任务。
PS:等不及的同学可以直接翻到文末点击阅读原文查看路线图 。别忘了收藏呦,此套路线图不定期更新呦!
第一阶段:大数据开发入门
×
MySQL数据库及SQL语法
MySQL可以处理拥有上千万条记录的大型数据库,使用标准的SQL数据语言形式,MySQL可以安装在不同的操作系统,并且提供多种编程语言的操作接口,这些编程语言包括C、C++、Python、Java、Ruby等等。支持多种存储引擎。
图片
b站直达
图片
b站传送门:https://www.bilibili.com/video/BV1iF411z7Pu
×
Kettle与BI工具
Kettle作为一个端对端的数据集成平台,其部分特色功能包括:无代码拖拽式构建数据管道、多数据源对接、数据管道可视化、模板化开发数据管道、可视化计划任务、深度Hadoop支持、数据任务下压Spark集群、数据挖掘与机器学习支持。
图片
b站直达
图片
b站传送门:https://www.bilibili.com/video/BV1CT4y157KE?p=24
×
Python与数据库交互
实际的生产任务中,数据几乎全部存在与数据库中,因此,与数据库的交互成为一件难以避免的事情。想要在Python代码中和MySQL数据库进行交互,需要借助一个第三方的模块“Pymysql”
图片
b站直达
图片
b站传送门:https://www.b