- 博客(175)
- 收藏
- 关注
原创 基于xgboost和lstm+attention创新对比的风机发电数据预测
本文对比分析了三种风电功率预测模型(LSTM、XGBoost和LSTM+Attention)在Kelmarsh风电场数据集上的表现。该数据集包含2016-2021年6台风机的地理信息、静态参数和10分钟间隔SCADA数据,涉及额定功率、转子直径等关键指标。数据来源于次级SCADA系统,部分信号可能存在缺失。研究参考了光伏发电功率预测项目的建模方法,通过不同模型的预测结果对比,为风电功率预测提供了多算法验证方案。完整项目资料可通过文末联系方式获取。
2025-07-21 15:12:23
299
原创 Swin-transformer结合CBAM+GRU故障诊断模型创新
摘要:本文介绍了一种基于Swin-CBAM+GRU多模态融合的轴承故障诊断模型。该模型创新性地结合时频图像空间特征和一维时序信号时间特征,通过格拉姆角场(GAF)将振动信号转换为时频图像,并采用CBAM注意力机制优化的SwinTransformer提取图像特征,同时利用GRU处理原始时序信号。实验采用凯斯西储大学轴承数据集,包含驱动端、风扇端和基座三个位置的振动数据,通过特征拼接融合实现10分类故障诊断。
2025-07-21 15:10:07
770
原创 基于densenet网络创新的肺癌识别研究
本文提出一种改进的DenseNet网络,用于肺癌CT图像识别。通过引入多尺度卷积、深度可分离卷积、SE注意力机制和空间金字塔池化(SPP)模块,显著提升了模型对肺结节大小和形态的识别能力。深度可分离卷积大幅降低了参数量,使模型更适合临床部署。数据预处理采用统一尺寸和标准化处理,训练过程使用交叉熵损失函数和多指标评估。实验表明,该模型在保证精度的同时实现了轻量化,适用于医疗影像分析场景。
2025-07-19 16:09:11
737
原创 基于LSTM的时间序列到时间序列的回归模拟
本项目开发了一个基于LSTM的序列到序列(Seq2Seq)模型,用于时间序列回归任务。通过多Excel文件数据预处理(归一化、数据集构建)和留一交叉验证训练策略,模型采用编码器-解码器架构捕捉时间依赖性。使用MSE损失函数和Adam优化器,通过早停机制防止过拟合。评估指标包括MSE、MAE和R²,并提供了预测函数和可视化功能。最终模型表现良好,未来可探索更复杂架构和超参数优化。该模型为时间序列预测提供了有效解决方案。
2025-07-19 16:05:22
1038
原创 基于cnn和resnet和mobilenet对比实现驾驶员分心检测
本文介绍了一个基于深度学习的驾驶员分心行为检测系统,采用CNN、ResNet和MobileNetV2三种模型进行对比实验。重点阐述了MobileNetV2的关键技术:深度可分离卷积、线性瓶颈结构和倒残差设计,以及完整实现流程:1)数据集准备与标注;2)数据增强处理;3)模型加载与微调;4)训练过程优化;5)评估指标可视化;6)单图预测功能。该系统可高效识别10种驾驶行为(如发短信、通话等),特别适合部署在移动设备,为驾驶安全监控提供智能解决方案。
2025-07-18 17:29:13
772
原创 SegNet:一种用于图像分割的深度卷积编码器解码器架构
是深度学习用于语义分割领域的开山之作,在传统卷积神经网络(CNN)的基础上进行了改进,传统 CNN 主要用于图像分类任务。它的结构通常包括卷积层、池化层和全连接层。在图像分类中,CNN 的输出是一个固定大小的向量(例如,1000 类分类任务的输出向量长度为 1000),表示输入图像属于各个类别的概率分布。全连接层的输入大小是固定的,这意味着输入图像的大小也必须固定。全卷积神经网络的核心思想是将传统 CNN 中的全连接层替换为卷积层,实现对任意大小输入图像的像素级处理。教程/讲解视频点击文末名片。
2025-07-17 19:02:41
556
原创 基于LSTM的机场天气分析及模型预测
本文提出了一种基于LSTM的机场天气预测模型。通过线性回归插值处理气象数据缺失值,并构建30天滚动平均和季节性特征。采用双层LSTM网络结构,结合Dropout和Adam优化器进行训练。实验结果显示模型能较好拟合气温变化趋势,但存在局部预测偏差(MSE=1404.54,MAE=21.52)。未来可通过引入更多气象特征或尝试Transformer架构来提升性能。研究为机场天气预测提供了可行的深度学习方法。
2025-07-17 18:41:10
356
原创 基于faster-r-cnn行人检测和ResNet50+FPN的可见光红外图像多模态算法融合创新
本文提出了一种基于双分支ResNet50+FPN网络的多模态目标检测框架,通过特征融合和输入层融合两种创新策略处理可见光与红外图像。实验结果显示,特征融合策略在[email protected](0.9752)和[email protected]:0.95(0.6221)指标上表现最优,但计算量较大(147.28GFLOPs);输入层融合策略在保持较高精度([email protected]:0.9740)的同时,计算效率更优(135.43GFLOPs)。单模态FasterRCNN模型实现了0.9627的[email protected]和34.14FPS的推理速度。
2025-07-16 17:04:04
546
原创 基于3D卷积神经网络与多模态信息融合的医学影像肿瘤分类与可视化分析
该项目利用3D卷积神经网络进行医学图像肿瘤检测与分类,结合患者性别、年龄等非图像数据实现多模态信息融合。创新点包括:1)采用3D卷积捕捉空间特征;2)引入Grad-CAM可视化提高模型可解释性;3)设计改进的卷积模块增强正则化效果。模型处理3D CT扫描数据,通过预处理、数据增强后输入网络训练,评估指标包含准确率、F1分数等。虽存在计算量大等不足,但为医学影像分析提供了有效解决方案,具有临床应用价值。
2025-07-01 14:20:51
277
原创 lenets5模型实现手写数字识别实时画板手写预测
本项目包含两个核心文件:train_lenet5_mnist.py用于训练LeNet-5模型识别MNIST手写数字,huatu.py提供图形界面实现手写识别功能。训练脚本包含数据预处理、模型定义(含卷积层和全连接层)、优化训练及模型保存功能。界面程序通过Tkinter搭建画布,支持用户手写输入,经过图像处理后调用预训练模型进行预测,并显示识别结果。项目完整展示了从模型训练到实际应用的完整流程,适合深度学习初学者学习CNN和PyTorch框架应用。
2025-07-01 14:19:28
219
原创 lstm模型实现温度预测
本文介绍了基于LSTM的温度预测模型开发全流程。从数据预处理(清洗、归一化、序列构建)到模型构建(LSTM网络结构设计),再到模型训练(参数优化、损失计算)和评估(RMSE/MAE指标)。采用网格搜索进行超参数调优,最终保存最优模型和归一化参数。实验设置固定随机种子确保可复现性,通过时间插值处理缺失值,并可视化分析数据特征。该方案完整展现了时间序列预测任务的典型处理流程,特别适用于温度等时序数据的建模预测。
2025-07-01 14:17:51
668
原创 完整的ROS节点来实现果蔬巡检机器人建图与自主避障系统
laser_callback 方法:这个方法订阅了/scan话题(激光雷达数据),在接收到新的激光数据时会调用laser_callback方法。check_for_obstacles 方法:这个方法会从激光数据中获取机器人前方最小的距离,并与设置的安全距离进行比较。AutonomousRobot 类:定义了一个控制机器人的类,主要通过激光雷达数据来判断是否有障碍物,并根据检测结果控制机器人的运动。为了更好地查看机器人的建图过程和状态,您可以使用rviz来可视化激光雷达数据、机器人位置和地图。
2025-06-30 17:00:55
436
原创 黑神话悟空游戏舆情分析
SnowNLP 是一个用于处理中文文本的 Python 库,提供了多种自然语言处理(NLP)功能,能够执行诸如分词、词性标注、情感分析、文本摘要等功能,适合中文文本的分析和处理。通过常理,游戏时间长、游戏等级高、游戏数量多、游戏成就多等,对应的游戏用户更为资深,其评论更具有权威性和可靠性。在 Steam 平台购买游戏时,用户评价主要可能涉及:游戏性能、画面、音效、剧情、游戏机制、重玩价值、DLC、性价比、系统要求等。模型:用户标签系统、K-Means聚类模型、SnowNLP、jieba。
2025-06-30 16:59:46
817
原创 基于知识图谱的红楼梦人物关系可视化及问答系统
- get_*.py 是之前爬取人物资料的代码,已经产生好images和json 可以不用再执行。|-show_profile.py 是调用人物资料和图谱展示在前端的代码。|-create_graph.py 创建知识图谱,图数据库的建立。static文件夹存放css和js,是页面的样式和效果的文件。|-all_relation.html 所有人物关系页面。raw_data文件夹是存在数据处理后的三元组文件。|-query_graph.py 知识图谱的查询。|-search.html 搜索人物关系页面。
2025-06-27 17:27:14
407
原创 基于opencv的鱼群检测和数量统计识别鱼群密度带界面
摘要:本项目利用OpenCV图像处理技术实现了视频鱼类自动检测计数系统。通过背景减除、形态学处理和轮廓检测等方法,在视频帧中标记鱼类并统计数量。系统包含视频读取、前景提取、轮廓分析、中心点跟踪等核心功能,可实时显示计数结果。适用于水产养殖、生态监测等领域,具有实用价值。未来可通过参数优化、引入深度学习和多目标跟踪技术进一步提升准确性。(147字)
2025-06-27 16:31:34
1394
原创 基于yolo海洋垃圾物品识别系统flask
本文介绍了一个基于YOLO深度学习模型的海洋垃圾识别系统。该系统利用Flask框架搭建Web应用,用户可上传图片,系统通过预训练的YOLO模型自动检测和分类海洋垃圾,并以JSON格式返回识别结果(包括垃圾类别和数量)。技术栈包含Python 3.12、Flask、PyTorch等,具有简洁的HTML前端界面。系统功能包括图片上传、垃圾识别和结果展示,文件结构清晰,包含主程序、预测模块和前端模板等。该项目为环保监测提供了智能化的解决方案。
2025-06-26 16:24:48
223
原创 基于深度学习的智能宠物猫狗睡觉玩耍吃饭等行为识别检测
本代码对数据集进行了预处理,包括通过在较短边增加灰边,使得图片变为正方形(如果图片原本就是正方形则不会增加灰边),和旋转角度,来扩增增强数据集,运行02深度学习模型训练.py就会将txt文本中记录的训练集和验证集进行读取训练,训练好后会保存模型在本地。运行03pyqt_ui界面.py就可以有个可视化的ui界面,通过点击按钮可以加载自己感兴趣的图片识别。下载本代码后,有个requirement.txt文本,里面介绍了如何安装环境,环境需要自行配置。查看完整项目获取点击下方名片↓。02深度学习模型训练.py。
2025-06-26 16:21:32
352
4
原创 基于深度学习yolov8的网课坐姿课堂行为检测系统pyqt
为了更科学、客观地评估学生课堂行为,本项目旨在利用深度学习技术,特别是基于YOLOv8算法,构建一套高效、准确的学生课堂行为检测系统。该系统能够实时分析学生在课堂上的行为,为教师提供全面的学生学习行为信息,从而帮助教师制定更有针对性的教学策略,提升教学质量。行为识别与分析:利用训练好的YOLOv8模型,对预处理后的视频数据进行逐帧分析,识别出学生的各种课堂行为。高效性:基于YOLOv8算法的学生课堂行为检测系统具有较快的处理速度和较高的识别准确率,能够实时分析大量视频数据并生成准确的行为分析报告。
2025-06-25 16:30:48
409
原创 多个yolo模型对比融合创新CBAM注意力集成GhostNet实验停车位线识别检测
因此我们将车位角点、车位线和车位占用情况等多种特征相结合,并将车位线抽象为角点间的线段,以避免车位线形态的影响,从而在复杂环境下实现高准确性且支持多目标检测的车位线识别。同时,基于轻量化设计原则,我们对深度学习模型的网络结构进行优化,引入Convolutional Block Attention Module(CBAM)注意力机制模块,优化损失函数,提高车位识别精度,引入GhostNet通过生成更为紧凑的‘幽灵特征’(Ghost Features),减少冗余计算,减少模型的算力消耗。源码获取点击末尾名片。
2025-06-25 16:28:14
754
原创 基于3D模型的人脸矫正算法设计与实现
基于3D模型的人脸矫正算法设计与实现摘 要:目前的人脸识别技术只能在比较理想的情况下实现高准确率的识别,而人脸矫正提供了有效和高效的人脸数据增强方法,并进一步提高了极端姿势情况下的人脸识别性能。虽然近年来在以深度学习为基础的人脸识别技术上有所进步,但是人脸及其复杂且不齐的三维结构是人脸识别面临的最大的问题。传统方法是使用面部特征检测方法,提取面部特征。但在大多数情况下,人脸处于遮挡状态,被遮挡的区域只能被“猜测”,在看不见的地方,它会变得模糊不清,难以形成一个统一的人脸对齐模型。过去学者一般通过对称性编辑
2025-06-25 15:35:36
947
原创 基于BERT+MLP模型的仇恨言论文本分类
包含3个字段:id,文本内容,文本内容对应的类别。完整源码项目包获取→点击文章末尾名片!具体类别为:是否为仇恨言论。
2025-01-29 14:28:57
373
原创 基于迁移学习的ResNet50模型实现石榴病害数据集多分类图片预测
图像是从孟加拉国 Rajshahi 和 Pabna 的番石榴果园收集的,当时是 7 月的水果成熟季节,此时疾病最易感性。植物病理学家验证了图像分类的准确性。每张图像都经过预处理,以 RGB 格式预处理为 512 x 512 像素的一致大小,适用于深度学习和图像处理应用。不幸的是,番石榴生产受到降低产量的疾病的威胁。该数据集旨在帮助开发用于番石榴果实早期病害检测的机器学习模型,帮助保护收成并减少经济损失。该数据集包括 473 张番石榴果实的注释图像,分为三类。图像分类:适用于农业应用中的监督学习。
2025-01-22 15:18:23
831
原创 四个机器学习模型对比道路裂缝检测识别分类模型
课题使用的数据集为带标签的图像数据集,课题的目标为对于目标。数据预处理、模型搭建、模型训练、模型优化、模型检测、实验总结等过程。的图片,每种图片都包含有带裂痕的图片和不带裂痕的图片共两类图片。数据集中的部分图片可能存在着一定的遮挡干扰,例如阴影、建筑表面。粗糙、建筑表面脱落、拍摄角度变换、建筑表面的孔洞和背景噪声,目标数据。在机器学习的研究领域中,传统分类算法模型数量众多,适合的应用场景。展示并分析所使用的机器学习领域的分类模型(至少两种传统的机器学习。集的分类任务即为区分带裂痕和不带裂痕的图片。
2025-01-17 17:19:08
567
原创 敏感信息数据搜集系统全英文
例如,显示 “准确的敏感数据有助于我们更好地了解医疗保健需求,为每个人提供更好的服务 ”等信息,以强调所收集数据的价值。种族信息收集部分的标题为 “种族信息收集”,并附有简要说明: “请选择您的种族,这将有助于我们了解不同群体之间的健康差异。顶部导航栏: 页面顶部的导航栏包括几个重要选项: “数据收集“、”我的贡献“、”帮助中心“、”设置 "和其他链接。用户输入敏感数据后,系统会显示一个确认页面,其中包含用户提供的信息。用户可以在输入框中输入自己的宗教信仰,如果不愿意分享此信息,可以选择 “保密 ”选项。
2025-01-17 17:14:03
352
原创 基于机器学习的二手车价格预测数据分析可视化
数据集收录了上千条车辆登记信息,每一条记录都详尽地描述了一辆待售车辆的关键属性,涵盖品牌与型号、制造年份、里程数、燃料类型、发动机规格、变速器类型、外观与内饰颜色、事故历史以及所有权状况等 9 个重要特征。了解一辆车的具体制造年份可以帮助评估其技术先进程度及潜在的折旧情况;检查车辆的行驶里程是判断其使用状况和未来维护成本的重要依据;了解车辆是否经历过事故及其修复情况对于评估车况则直接影响到车辆的安全性和可靠性。本项目通过系统的数据分析和建模过程,深入探讨了影响二手车价格的多方面因素,并尝试构建预测模型。
2025-01-17 17:12:14
487
原创 LSTM模型实现光伏发电功率的预测
同时,针对时间序列数据特性,采用滑动窗口的方法生成特征序列(SEQ_LENGTH = 24),即利用过去24小时的特征数据来预测未来的有效功率。此外,模型采用了Adam优化器,并在每轮训练后进行了验证集评估,以实现最佳模型参数的选择,从而提升整体模型的收敛效果与泛化能力。数据清洗与缺失值处理:针对原始数据中的缺失值,项目采取了不同的填补策略。时间序列特征处理:在预处理阶段,模型使用滑动窗口法构建了特征序列(长度为24),即每次利用过去24小时的特征数据作为模型输入,用来预测下一时间步的发电功率。
2025-01-16 18:23:47
1644
原创 基于机器学习的电信用户流失预测与数据分析可视化
---对高价值客户的流失可能性进行建模评分,根据模型输出为每位高价值客户赋予流失得分(如 0 - 100 分),得分越高表明流失可能性越大,按得分区间(如 0 - 30 分低风险、31 - 60 分中风险、61 - 100 分高风险)对高价值客户进行分层管理。----将频道高价值客户单独分群,综合考量用户消费金额、消费频次、利润贡献、忠诚度(如会员等级、在网时长)等多维度指标,运用层次分析法(AHP)或专家打分法确定各指标权重,构建高价值客户评估体系,筛选出频道高价值客户群体,单独分群管理。
2025-01-16 18:03:23
585
原创 基于机器学习的用户健康风险分类及预测分析
本数据集包含若干健身房会员的详细信息,包括年龄、性别、体重、身高、心率、锻炼类型、身体脂肪比例等多项关键指标,旨在深入探索会员的健身习惯、生理状态及其与健康成果之间的联系。在这个日益注重健康与体能的时代,健身已成为许多人追求健康生活的重要组成部分。完整源码项目包获取→点击文章末尾名片!
2025-01-16 18:00:10
755
原创 游戏行业销售数据分析可视化
而Role-Playing-角色扮演类仍有一定的竞争力,Misc-混合类、Fighting-战斗类有一定的上升趋势。Sports-运动类和Shooter-射击类顺序互换,但我估计现在大环境局势紧张可以会推动射击游戏的火爆!可看出最近五年用户最喜爱的游戏类型依然还是Action-动作类(当然市场发行的也很多)Platform-横板类可能由于当时3D游戏技术的发展渐渐淡出视野,退出前5地位。完整源码项目包获取→点击文章末尾名片!字段有11列、数据量16598行。
2025-01-16 17:55:13
304
原创 某国际大型超市电商销售数据分析和可视化
本作品将从人、货、场三个维度,即客户维度、产品维度、区域维度(补充时间维度与其他维度)对某国际大型超市的销售情况进行数据分析和可视化报告展示,从而为该超市在弄清用户消费偏好、提升商品利润以及优化店铺陈列等方面,提供营销决策的数据基础,并提出促进销售提升的建议和运营策略方案,促进店铺的销售提升。完整源码项目包获取→点击文章末尾名片!
2025-01-16 17:52:54
821
原创 LSTM预测未来30天销售额
多特征输入与特征工程:代码在模型输入中不仅使用了销售额历史数据,还引入了温度和周数等辅助特征,并通过创建上周销售额的特征来增强模型的预测能力。这种多特征的方式增强了LSTM模型的表现,有效捕捉到了与销售额波动相关的多重因素。这种做法在处理复杂的时间序列预测任务时,能够更好地挖掘潜在的影响因子,提升预测精度。多步预测与序列化数据生成:项目中采用了多步序列预测,即通过过去30天的数据预测未来30天的销售额,而不仅仅是单步预测。这种多步预测使得模型能够在更长的时间范围内提供预测结果,增加了实际应用的价值。
2025-01-15 16:17:27
1494
深度学习乐园项目案例分享:A074-基于RMBG大模型的AI抠图证件照换背景带GUI
2025-01-25
深度学习乐园项目案例分享:A073-基于PP-OCR和ErnieBot的视频字幕提取和问答助手
2025-01-25
深度学习乐园项目案例分享:A066-WaveNet模型实现电力预测
2025-01-23
深度学习乐园项目案例分享:A061-TCN模型实现电力数据预测
2025-01-22
深度学习乐园项目案例分享:A059-MobileViT模型实现图像分类
2025-01-22
深度学习乐园项目案例分享:A057-PCC Net模型实现行人数量统计
2025-01-22
深度学习乐园项目案例分享:A030-DIN模型实现推荐算法
2025-01-22
深度学习乐园项目案例分享:A029-AlexNet模型实现鸟类识别
2025-01-22
深度学习乐园项目案例分享:A028-引入SE模块和注意力机制解决VGG16过拟合实现新冠肺炎图片多分类
2025-01-22
深度学习乐园项目案例分享:A027-CNN-LSTM住宅用电量预测
2025-01-22
深度学习乐园项目案例分享:A056-KerasCV YOLOv8实现交通信号灯检测
2025-01-21
深度学习乐园项目案例分享:A053-SSD融合FERPlus模型实现面部情绪识别
2025-01-21
深度学习乐园项目案例分享:A050-银行卡数字识别
2025-01-20
深度学习乐园项目案例分享:A049-基于opencv的人脸闭眼识别疲劳监测
2025-01-20
深度学习乐园项目案例分享:A048-基于opencv答题卡识别判卷
2025-01-20
深度学习乐园项目案例分享:A022-GAN模型实现二次元头像生成
2025-01-16
深度学习乐园项目案例分享:A021-efficientnet-b3模型实现动物图像识别与分类
2025-01-16
A020-LSTM模型实现电力数据预测
2025-01-16
深度学习乐园项目案例分享:A017-resnet模型实现瓜果蔬菜图像识别分类苹果香蕉梨西红柿大豆菠菜玉米黄瓜葡萄橙子菠萝石榴西瓜萝卜共4个G数据
2025-01-14
深度学习乐园项目案例分享:A026-DeepFM模型预测高潜购买用户
2025-01-15
深度学习乐园项目案例分享:A025-fasterRCNN模型实现飞机类目标检测
2025-01-15
深度学习乐园项目案例分享:A023-CNN模型实现mnist手写数字识别
2025-01-15
深度学习乐园项目案例分享:A019卫星图像道路检测DeepLabV3Plus模型
2025-01-14
深度学习乐园项目案例分享:A018-TransUNet模型创新图像分割实战
2025-01-14
深度学习乐园项目案例分享:A016-基于keras的停车场车位识别
2025-01-13
深度学习乐园项目案例分享:A008-基于YOLOv8-deepsort算法的智能车辆目标检测车辆跟踪和车辆计数
2025-01-12
深度学习乐园项目案例分享:A011-BertForSequenceClassification模型实现微博文本情感三分类提升
2025-01-12
snet50模型的船型识别与分类系统研究
2025-01-12
深度学习乐园项目案例分享:A006-BiLSTM和CRF模型实现NER中文命名实体识别完整源码可运行
2025-01-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人