基础算法的系统性总结

1. 排序算法

(1)简单排序(适合小规模数据)
算法核心思想时间复杂度特点
冒泡排序相邻元素比较交换,每轮将最大值冒泡到末尾最差/平均:O(n²)稳定,原地排序,代码简单
选择排序每轮选择最小元素放到已排序区间末尾最差/平均:O(n²)不稳定(交换破坏顺序),原地
插入排序将未排序元素插入已排序区间的正确位置最差/平均:O(n²)稳定,原地,适合近乎有序的数据
(2)高效排序(大规模数据首选)
算法核心思想时间复杂度特点
归并排序分治法,递归拆分后合并有序子数组最差/平均:O(n log n)稳定,非原地(需O(n)空间)
快速排序分治法,选取基准值分区(左小右大)平均:O(n log n),最差O(n²)不稳定,原地排序,实际最快
堆排序构建大顶堆,交换堆顶与末尾元素并调整最差/平均:O(n log n)不稳定,原地,适合动态数据流

关键对比

  • 快速排序:平均性能最优,但最差情况需优化(如随机化基准值)。
  • 归并排序:稳定且时间复杂度稳定,但空间开销大。
  • 实际应用
    • Python的list.sort()使用Timsort(归并+插入排序混合)。
    • C++的std::sort()基于快速排序+插入排序优化。

2. 查找算法

(1)顺序查找(线性查找)
  • 思想:逐个遍历元素,直到找到目标。
  • 复杂度:O(n)
  • 适用场景:无序数据或数据量极小。
(2)二分查找
  • 前提:数据必须有序
  • 思想:每次比较中间元素,缩小一半搜索范围。
  • 复杂度:O(log n)
  • 变种
    • 查找第一个/最后一个等于目标值的位置。
    • 查找插入位置(如Python的bisect模块)。
  • 应用:数据库索引、内存中的有序集合查询。

3. 图算法

(1)深度优先搜索(DFS)
  • 思想:递归或栈实现,尽可能深地探索分支,回溯后继续。
  • 复杂度:O(V+E)(V为顶点数,E为边数)
  • 应用
    • 拓扑排序(如任务调度)。
    • 连通分量检测(如Tarjan算法)。
(2)广度优先搜索(BFS)
  • 思想:队列实现,逐层遍历所有邻居。
  • 复杂度:O(V+E)
  • 应用
    • 无权图的最短路径(如迷宫问题)。
    • 社交网络中的“好友推荐”。
(3)Dijkstra算法(单源最短路径)
  • 前提:图中无负权边。
  • 思想:贪心策略,每次选择当前距离起点最近的顶点松弛其邻居。
  • 复杂度:O((V+E) log V)(优先队列优化后)
  • 应用:路由协议(如OSPF)、地图导航。
(4)Prim与Kruskal算法(最小生成树-MST)
算法核心思想时间复杂度适用场景
Prim贪心,从任意顶点逐步扩展最小边O(E log V)(堆优化)稠密图(邻接矩阵)
Kruskal按边权排序,依次选择不形成环的边O(E log E)(并查集)稀疏图(邻接表)

应用:网络布线、电路设计。

关键问题与优化

问题解决方案示例
快速排序最差情况随机化基准值或三数取中法C++ std::sort()的混合策略
Dijkstra负权边失效改用Bellman-Ford或SPFA算法金融网络中的套利检测
二分查找边界条件统一使用左闭右开区间([low, high)Python bisect.bisect_left()

现代演进方向

  1. 并行算法
    • 归并排序的MapReduce实现(大数据处理)。
    • GPU加速的快速排序(如CUDA Thrust库)。
  2. 近似算法
    • 针对大规模图的近似最短路径(如Landmark算法)。
  3. 混合策略
    • 内省排序(Introsort):快速排序+堆排序+插入排序(如C++ STL)。

掌握这些基础算法是解决复杂问题的基石(如快速排序的分治思想可扩展至Top K问题,DFS/BFS是回溯和动态规划的基础)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值