题目要求
给定两条长度均为 n 的整数数组 a 和 b,它们称为“互补”的,当且仅当存在一个整数 x,使得对所有 1≤i≤n 都有:
a_i + b_i = x
数组 a 和 b 的元素都是 [0, k] 之间的整数。但数组 b 中有些元素丢失,用 −1 表示。现在需要把所有的 −1 替换为 [0, k] 之间的整数,使得新的 b 与给定的 a 互补。
求有多少种不同的填充方案能使 a 和 b 互补。
输入格式
第一行:n k // 数组长度 n,元素上限 k
第二行:a1 a2 … an // 数组 a,0 ≤ ai ≤ k
第三行:b1 b2 … bn // 数组 b,−1 ≤ bi ≤ k(−1 表示丢失)
满足:1 ≤ n ≤ 2·10^5,0 ≤ k ≤ 10^9;所有测试用例中 ∑n ≤ 2·10^5。
输出格式
对每个测试用例,输出一个整数——使 a 和 b 互补的填充方案总数。
输入数据:
5 10
1 3 2 5 4
-1 -1 -1 -1 -1
输入数据:
5 10
1 3 2 5 4
-1 -1 -1 -1 -1
实现步骤
1.操作观察
b 全部缺失时需要确定一个统一的补数 x,使得对于所有 i 有: a[i] + b[i] = x 且 b[i] ∈ [0, k],也就是说 x - a[i] ∈ [0, k]
这可以转化为对每个 i 列出一个限制条件:
a[i] ≤ x ≤ a[i] + k
因此,x 必须落在所有 i 的区间交集内,即
x ∈ [max(a[i]), min(a[i] + k)]
2.实现思路
读取输入。
初始化 low 为 0,high 为 LLONG_MAX(或其他足够大的数)。
遍历数组 a,对于每个 a[i],更新 low 和 high。
检查计算出的 low 和 high 是否满足 low ≤ high。如果不满足,说明不存在能够令 x 满足所有条件的取值,此时输出 0。
如果区间存在,有效的 x 的个数为 (high - low + 1)。这相当于对于每个可能的 x,都能唯一决定 b[i] = x - a[i],所以方案数就是区间内整数个数,输出。
代码示例
#include <bits/stdc++.h>
using namespace std;
typedef long long i64;
typedef __int128_t i128;
#define N 200005
const int M = 1e9 + 7;
void solve()
{
int n, k;
cin >> n >> k;
vector<i64> a(n), b(n);
for (int i = 0; i < n; i++)
{
cin >> a[i];
}
for (int i = 0; i < n; i++)
{
cin >> b[i];
}
i64 low = 0, high = LLONG_MAX;
for (int i = 0; i < n; i++)
{
low = max(low, a[i]);
high = min(high, k + a[i]);
}
if (low > high)
{
cout << 0 << "\n";
}
else
{
cout << (high - low + 1) << "\n";
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
solve();
return 0;
}
}
答案
运行代码得到答案7