给你两个正整数 n
和 limit
。
请你将 n
颗糖果分给 3
位小朋友,确保没有任何小朋友得到超过 limit
颗糖果,请你返回满足此条件下的 总方案数 。
示例 1:
输入:n = 5, limit = 2 输出:3 解释:总共有 3 种方法分配 5 颗糖果,且每位小朋友的糖果数不超过 2 :(1, 2, 2) ,(2, 1, 2) 和 (2, 2, 1) 。
示例 2:
输入:n = 3, limit = 3 输出:10 解释:总共有 10 种方法分配 3 颗糖果,且每位小朋友的糖果数不超过 3 :(0, 0, 3) ,(0, 1, 2) ,(0, 2, 1) ,(0, 3, 0) ,(1, 0, 2) ,(1, 1, 1) ,(1, 2, 0) ,(2, 0, 1) ,(2, 1, 0) 和 (3, 0, 0) 。
提示:
1 <= n <= 10^6
1 <= limit <= 10^6
分析:枚举第一个小朋友分得 x 颗糖果,那么还剩下 n−x 颗糖果,此时有两种情况:
n−x>limit×2,至少有一个小朋友会分得大于 limit 颗糖果,此时不存在合法方案。
n−x≤limit×2,对于第二个小朋友来说,至少得分得 max(0,n−x−limit) 颗糖果,才能保证第三个小朋友分得的糖果不超过 limit 颗。同时至多能拿到 min(limit,n−x) 颗糖果。
对于第二种情况计算出所有的合法方案即可。
long long distributeCandies(int n, int limit) {
long long ans=0;
for(int i=0;i<=fmin(limit,n);++i)
{
if(n-i>limit*2)continue;
long long x,y;x=fmax(0,n-i-limit),y=n-i-x;
// printf("i=%d x=%d y=%d\n",i,x,y);
ans+=abs(y-x)+1;
}
return ans;
}