n
个孩子站成一排。给你一个整数数组 ratings
表示每个孩子的评分。
你需要按照以下要求,给这些孩子分发糖果:
- 每个孩子至少分配到
1
个糖果。 - 相邻两个孩子评分更高的孩子会获得更多的糖果。
请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目 。
示例 1:
输入:ratings = [1,0,2] 输出:5 解释:你可以分别给第一个、第二个、第三个孩子分发 2、1、2 颗糖果。
示例 2:
输入:ratings = [1,2,2] 输出:4 解释:你可以分别给第一个、第二个、第三个孩子分发 1、2、1 颗糖果。 第三个孩子只得到 1 颗糖果,这满足题面中的两个条件。
提示:
n == ratings.length
1 <= n <= 2 * 10^4
0 <= ratings[i] <= 2 * 10^4
分析:先正着找连续非递增序列,直到数组末尾或者某个数不再非递增。用一个数组,记录每个对应位置的孩子应该发多少糖果。处理这段连续非递增序列,最后一个孩子发 1 个,之后向前数,如果当前孩子的得分大于后一个,则比后一个多分 1 个,否则只分 1 个。处理完之后,要额外判断当前这个序列的第一个孩子的得分,是不是比上一个序列的末尾孩子得分要高,如果高,则这个序列的第一个孩子的糖果应该是,自己序列得到的糖果,与上一个序列的末尾孩子糖果 +1 的较大值。
int candy(int* ratings, int ratingsSize) {
int cnt=0,ans=0;
int ret[ratingsSize+5];
memset(ret,0,sizeof(ret));
for(int i=1;i<ratingsSize;++i)
{
if(ratings[i]<=ratings[i-1])continue;
else
{
ret[i-1]=1;
for(int j=i-2;j>=cnt;--j)
{
if(ratings[j]>ratings[j+1])ret[j]=ret[j+1]+1;
else ret[j]=1;
}
if(cnt&&ratings[cnt]>ratings[cnt-1])ret[cnt]=fmax(ret[cnt-1]+1,ret[cnt]);
cnt=i;
}
}
ret[ratingsSize-1]=1;
for(int j=ratingsSize-2;j>=cnt;--j)
{
if(ratings[j]>ratings[j+1])ret[j]=ret[j+1]+1;
else ret[j]=1;
}
if(cnt&&ratings[cnt]>ratings[cnt-1])ret[cnt]=fmax(ret[cnt-1]+1,ret[cnt]);
for(int i=0;i<ratingsSize;++i)ans+=ret[i];
return ans;
}