- 博客(8)
- 收藏
- 关注
原创 深度学习在缺陷定位的一些想法
在Defects4J基准(395个真实缺陷)上的评估显示,AgentFL在Top-1范围内定位了157个缺陷,显著优于其他基于LLM的方法,并能与现有学习型技术产生互补。:如何利用多源数据(多项目、多版本)进行联合建模,以及如何定位代码行级或片段级缺陷,是未来研究趋势。:不同项目的代码风格、模块结构和缺陷特征可能差异甚远,现有域适应方法(如TCA、对抗学习)尚难完全消除这种差异,需要更鲁棒的迁移策略。未来,如何将LLM与传统模型和域知识有效结合,进行领域微调与知识注入,是该领域的重要方向。
2025-05-26 11:08:55
465
原创 pytorch深度学习模型学习(2)
优化器在深度学习中用于更新模型的参数,以最小化损失函数。PyTorch提供了多种优化算法,如SGD(随机梯度下降)、Adam、RMSprop等,它们都封装在torch.optim模块中。通过以上示例,我们可以看到如何在PyTorch中创建张量、使用自动求导、构建神经网络模型以及使用优化器进行参数更新。这些基本概念和操作是进行深度学习模型训练的基石。在PyTorch中,模型定义是通过继承torch.nn.Module类并实现forward方法来完成的。模型可以是自定义的,也可以是预训练模型的微调。
2025-02-27 10:07:56
284
原创 sql注入型解题思路:
1 union select 1,group_concat(column_name) from information_schema.columns where table_schema='sqli' and table_name='上级表名'#字符型:提交and 1=1和提交 and1=2有回显(提交and 1=2时如果是字符型注入,则不能将1=2解析,就会默认为是对的,从而回显id=id的值;-1 union select 1,group_concat(该列名)from sqli.上级表名。
2025-02-24 21:22:59
355
原创 阅读《基于深度学习的软件工程:进展、挑战与机遇》笔记(50%)
任务:代码摘要旨在自动生成代码的简洁描述,帮助开发者理解代码的功能和用法。应用深度学习模型:深度学习模型被用于从代码序列、AST、树结构、图结构等多种信息源生成代码摘要。
2025-02-17 16:44:07
1027
原创 ctf信息泄露--SQL注入(整数型,字符型)学习笔记:
1:查询字段数2:爆破数据库名3:爆破库内表名4:爆破表名5:爆破列名6:爆破字段内容。
2024-12-06 14:13:55
327
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人