道路斑马线数据集,目标检测
两类:斑马线,箭头
数量:3600+
格式:txt,yolo算法都可以用
图片都标注好,也分好训练集和验证集
使用YOLOv8进行斑马线和箭头的目标检测,并提供详细的训练代码和数据集准备步骤。假设你已经有一个包含3600+张图片的数据集,并且这些图片已经标注了YOLO格式的TXT标签,且已经分好训练集和验证集。
项目结构
深色版本
zebra_crossing_detection/
├── dataset/
│ ├── images/
│ │ ├── train/
│ │ └── val/
│ ├── labels/
│ │ ├── train/
│ │ └── val/
├── weights/
│ └── best.pt
├── src/
│ ├── train.py
│ ├── predict.py
│ ├── utils.py
│ ├── ui/
│ │ └── main_window.ui
├── requirements.txt
└── README.md
- 安装依赖
首先,确保你已经安装了必要的库。创建一个requirements.txt文件,内容如下:
深色版本
opencv-python
numpy
pillow
PyQt5
ultralytics
然后,使用以下命令安装依赖:
bash
深色版本
pip install -r requirements.txt
2. 数据集准备
确保你的数据集已经按照以下结构组织:
深色版本
dataset/
├── images/
│ ├── train/
│ └── val/
└── labels/
├── train/
└── val/
每个文件夹中包含对应的图像文件和标签文件。确保所有图像文件都是.jpg格式,而标签文件是.txt格式(YOLO格式),并且它们的名字与对应的图像文件相同。
- 数据集配置文件
创建一个数据集配置文件(如zebra_crossing_dataset.yaml),该文件定义了数据集的基本信息,包括路径、类别等。示例配置如下:
yaml
深色版本
训练和验证的数据集路径
train: dataset/images/train
val: dataset/images/val
标签路径
labels_train: dataset/labels/train
labels_val: dataset/labels