如何使用yolov8训练道路斑马线数据集,目标检测 两类:斑马线,箭头 数量:3600+ 格式:txt,yolo算法都可以用 图片都标注好,也分好训练集和验证集

道路斑马线数据集,目标检测在这里插入图片描述

两类:斑马线,箭头
数量:3600+
格式:txt,yolo算法都可以用
图片都标注好,也分好训练集和验证集在这里插入图片描述
在这里插入图片描述
使用YOLOv8进行斑马线和箭头的目标检测,并提供详细的训练代码和数据集准备步骤。假设你已经有一个包含3600+张图片的数据集,并且这些图片已经标注了YOLO格式的TXT标签,且已经分好训练集和验证集。

项目结构
深色版本
zebra_crossing_detection/
├── dataset/
│ ├── images/
│ │ ├── train/
│ │ └── val/
│ ├── labels/
│ │ ├── train/
│ │ └── val/
├── weights/
│ └── best.pt
├── src/
│ ├── train.py
│ ├── predict.py
│ ├── utils.py
│ ├── ui/
│ │ └── main_window.ui
├── requirements.txt
└── README.md

  1. 安装依赖
    首先,确保你已经安装了必要的库。创建一个requirements.txt文件,内容如下:

深色版本
opencv-python
numpy
pillow
PyQt5
ultralytics
然后,使用以下命令安装依赖:

bash
深色版本
pip install -r requirements.txt
2. 数据集准备
确保你的数据集已经按照以下结构组织:

深色版本
dataset/
├── images/
│ ├── train/
│ └── val/
└── labels/
├── train/
└── val/
每个文件夹中包含对应的图像文件和标签文件。确保所有图像文件都是.jpg格式,而标签文件是.txt格式(YOLO格式),并且它们的名字与对应的图像文件相同。

  1. 数据集配置文件
    创建一个数据集配置文件(如zebra_crossing_dataset.yaml),该文件定义了数据集的基本信息,包括路径、类别等。示例配置如下:

yaml
深色版本

训练和验证的数据集路径

train: dataset/images/train
val: dataset/images/val

标签路径

labels_train: dataset/labels/train
labels_val: dataset/labels

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值