使用YOLOv8来训练一个包含2100张图像的苹果及叶片病害检测数据集。这个数据集已经划分为训练集、验证集和测试集(比例为7:2:1),并且标注为YOLO格式,可以直接用于模型训练。
数据集描述
数据量:2100张图像
类别:
0: alternaria(交链孢菌)
1: anthracnose(炭疽病)
2: marssonina(苹果斑点病)
3: scab(苹果黑星病)
4: sootyblotch(煤污病)
5: valsa canker(苹果溃疡病)
6: whiterot(白腐病)
标注格式:YOLO格式
应用场景:苹果及叶片病害检测
数据集组织
假设你的数据集目录结构如下:
深色版本
apple_leaf_disease_dataset/
├── images/
│ ├── train/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
│ ├── val/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
│ └── test/
│ ├── 000001.jpg
│ ├── 000002.jpg
│ └── …
├── labels/
│ ├── train/
│ │ ├── 000001.txt