使用YOLOv8来训练一个苹果及叶片病害检测数据集,并使用训练好的模型进行预测。

使用YOLOv8来训练一个包含2100张图像的苹果及叶片病害检测数据集。这个数据集已经划分为训练集、验证集和测试集(比例为7:2:1),并且标注为YOLO格式,可以直接用于模型训练。在这里插入图片描述
在这里插入图片描述

数据集描述
数据量:2100张图像
类别:
0: alternaria(交链孢菌)
1: anthracnose(炭疽病)
2: marssonina(苹果斑点病)
3: scab(苹果黑星病)
4: sootyblotch(煤污病)
5: valsa canker(苹果溃疡病)
6: whiterot(白腐病)
标注格式:YOLO格式
应用场景:苹果及叶片病害检测
数据集组织
假设你的数据集目录结构如下:
在这里插入图片描述

深色版本
apple_leaf_disease_dataset/
├── images/
│ ├── train/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
│ ├── val/
│ │ ├── 000001.jpg
│ │ ├── 000002.jpg
│ │ └── …
│ └── test/
│ ├── 000001.jpg
│ ├── 000002.jpg
│ └── …
├── labels/
│ ├── train/
│ │ ├── 000001.txt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值