如何使用YOLOv8模型训练智慧化建筑工地检测数据集 推理识别人,板,砖,切割机,挂钩,反光背心,木头,脚手架,电箱,护栏,安全帽,钢筋,手推车,漏斗,宣传横幅标语
文章目录
智慧工地检测数据集,基础生产要素检测数据集
采用voc、yolo两种标注方式标注,无人机,监控摄像,手持拍照等方式,对工地中工人、材料、机器和环境等共计15类对象类别(分别为人,板,砖,切割机,挂钩,反光背心,木头,脚手架,电箱,护栏,安全帽,钢筋,手推车,漏斗,宣传横幅标语)进行标注。
从多个建筑工地收集了超过20,000张图像,涵盖了不同情况、天气条件和建设阶段,覆盖了不同的角度和视角。共24GB数据量
“智慧工地检测数据集,基础生产要素检测数据集”的结构化表格:
智慧工地检测数据集 - 基础生产要素检测数据集
项目 | 描述 |
---|---|
数据集名称 | 智慧工地检测数据集 - 基础生产要素检测数据集 |
图像来源 | 无人机、监控摄像、手持拍照 |
标注格式 | VOC、YOLO |
对象类别 | 共计15类: 1. 人 (Person) 2. 板 (Board) 3. 砖 (Brick) 4. 切割机 (Cutter) 5. 挂钩 (Hook) 6. 反光背心 (Reflective Vest) 7. 木头 (Wood) 8. 脚手架 (Scaffold) 9. 电箱 (Electric Box) 10. 护栏 (Guardrail) 11. 安全帽 (Hard Hat) 12. 钢筋 (Rebar) 13. 手推车 (Wheelbarrow) 14. 漏斗 (Funnel) 15. 宣传横幅标语 (Banner) |
图像数量 | 超过20,000张 |
数据量 | 24GB |
覆盖条件 | 不同情况、天气条件和建设阶段;不同的角度和视角 |
1
1
如何使用YOLOv8进行目标检测任务。环境搭建、数据准备到模型训练、推理以及评估的全过程。
一、准备工作
1. 安装必要的软件和依赖
首先确保已安装Anaconda或Miniconda,并创建一个Python虚拟环境:
conda create -n yolo_env python=3.8
conda activate yolo_env
然后安装PyTorch和其他必要的库:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
pip install ultralytics opencv-python matplotlib numpy tqdm tensorboard
2. 数据准备
下载并解压数据集到本地目录。假设tx 同学数据集结构如下:
construction_site_dataset/
├── images/
│ ├── train/
│ ├── val/
│ └── test/
└── labels/
├── train/
├── val/
└── test/
同时,创建一个data.yaml
文件来描述数据集的路径和类别信息:
train: ./construction_site_dataset/images/train
val: ./construction_site_dataset/images/val
test: ./construction_site_dataset/images/test
nc: 15
names: ['person', 'board', 'brick', 'cutter', 'hook', 'reflective_vest', 'wood', 'scaffold', 'electric_box', 'guardrail', 'hard_hat', 'rebar', 'wheelbarrow', 'funnel', 'banner']
请根据实际类别名称调整上述names
字段。
二、模型训练
1. 加载预训练模型
从Ultralytics加载YOLOv8的一个预训练模型作为起点:
from ultralytics import YOLO
model = YOLO('yolov8s.pt') # 或者选择其他尺寸的模型
2. 开始训练
使用您的数据集对模型进行微调:
results = model.train(
data='path/to/data.yaml',
epochs=100, # 根据需要调整
batch=16, # 调整以适应GPU内存
imgsz=640, # 图像大小
project='runs/detect/construction_site',
name='yolov8s_construction'
)
三、模型推理
1. 推理单张图片
加载训练好的模型并对新图像进行预测:
from ultralytics import YOLO
import cv2
from PIL import Image
model = YOLO('runs/detect/construction_site/yolov8s_construction/weights/best.pt')
results = model('path/to/new_image.jpg')
# 显示结果
for r in results:
im_array = r.plot() # 绘制边界框和标签
im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
im.show()
2. 批量推理
您可以编写脚本来遍历整个文件夹中的所有图像,并应用上述推理步骤。
四、模型评估
在验证集上评估模型性能:
metrics = model.val(data='path/to/data.yaml', split='val')
print(f"mAP50: {metrics.box.map50:.4f}")
print(f"mAP50-95: {metrics.box.map:.4f}")
五、总结与建议
- 数据增强:为了提高模型泛化能力,可以在训练时开启或自定义数据增强策略。
- 监控训练过程:使用TensorBoard监控训练进度:
tensorboard --logdir runs/detect/construction_site/yolov8s_construction
- 优化超参数:根据实验结果调整学习率、批次大小等超参数以优化模型性能。
- 多尺度训练:考虑采用多尺度训练来提高模型对不同尺度目标的识别能力。
以上是基于YOLOv8针对智慧工地基础生产要素检测数据集的全流程指南。通过此流程,您可以实现对工人、材料、机器和环境等对象的有效检测。如果需要进一步的帮助或有更具体的问题,请随时告知!