
认知科学与NLP
文章平均质量分 93
设计认知科学与NLP的交叉领域。
金井PRATHAMA
涉及自然语言处理(NLP)、知识图谱、认知科学、脑神经科学、系统科学(信息论)、哲学、符号学、逻辑学、中国传统语言文字学(训诂学、文字学、音韵学)、语义学(认知语义学)等交叉学科领域,致力于深层语义分析,探索人类底层逻辑一致性的规律。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
自我中心参考系(Egocentric FoR)与环境中心参考系(Allocentric FoR)这两种空间认知神经编码系统对NLP中的深层语义分析的积极影响和启示
认知神经科学揭示的自我中心与环境中心参考系(Ego-FoR/Allo-FoR)为NLP语义理解提供了突破性启示。该双参考系统通过背侧/腹侧神经通路分别处理视角相关语义和环境结构信息,其动态整合机制可解决三大核心问题:1)空间关系解析的双通路建模,2)长文本的视角-环境协同推理,3)跨模态语义对齐。神经速度细胞的动态编码特性进一步支持语义演化预测,而网格细胞的静态表征则增强歧义消解能力。仿生架构设计需模拟海马-顶叶回路的参考系转换机制,结合语义速度单元和脉冲工作记忆优化长程依赖处理。未来挑战在于动态切换的实时原创 2025-07-30 22:35:17 · 1142 阅读 · 0 评论 -
从人类感知认知机制看自然语言处理的语义分析与推理能力
本文探讨了当前自然语言处理技术从模仿走向真正理解的发展路径。文章分析了人类感知与认知的双重机制:感知系统通过"符号接地"将语言与物理世界连接,认知系统则构建知识网络和推理能力。基于这一理论框架,作者提出了NLP技术发展的三个方向:从表层语义分析转向事件框架理解,从知识存储升级为关系网络构建,从统计相关性推理提升到因果心智模型。文章还前瞻性地探讨了具身智能、神经符号AI等前沿方向,指出实现真正的语言理解需要建立感知与认知协同的闭环系统。原创 2025-07-18 20:45:21 · 1378 阅读 · 0 评论 -
略说认知科学对NLP中核心任务的影响
认知科学深刻影响了自然语言处理(NLP)的多个核心领域。在深层语义分析中,框架语义学和心智模型理论启发了FrameNet和情境化嵌入技术。语义角色标注借鉴了原型理论和具身认知,优化了语义特征设计。词义相似度计算融合了概念网络和多模态感知,突破传统分布语义限制。情感分析引入认知评价理论,实现细粒度情感分类和隐含情感识别。隐喻分析基于概念映射理论,开发出跨域对齐的检测方法。这些影响推动NLP从表层统计向人类认知机理的深度理解转变,使算法设计更符合语言认知本质。原创 2025-07-16 00:14:27 · 892 阅读 · 0 评论