
语义学与NLP
文章平均质量分 88
金井PRATHAMA
涉及自然语言处理(NLP)、知识图谱、认知科学、脑神经科学、系统科学(信息论)、哲学、符号学、逻辑学、中国传统语言文字学(训诂学、文字学、音韵学)、语义学(认知语义学)等交叉学科领域,致力于深层语义分析,探索人类底层逻辑一致性的规律。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深层语义统一规律与形式化语义建模的理论基础与计算应用
本文探讨构建统一语义解释模型的理论基础与挑战。研究发现,不同语言在概念表征、论元角色和概念隐喻等方面存在深层共性,指向人类共享的概念结构。为实现机器对深层语义的可靠解析,需进行形式化建模,包括规则提取、数学工具运用以及与句法、语用的接口整合。统一的语义框架将增强NLP的可解释性、提升隐喻理解能力,并为高级推理奠定基础。然而,该模型面临形式系统与认知内容的鸿沟、概念范畴的复杂性等挑战,需跨学科合作解决。这一研究不仅具有理论意义,也将推动人工智能在深度语义解析和复杂推理方面的发展。原创 2025-07-14 03:26:41 · 682 阅读 · 0 评论 -
语义学是否存在普遍真理?从理论分野到NLP的破局可能
摘要:语义学的核心争议围绕是否存在跨语言统一语义真理展开,涉及形式语义学与认知语言学的对立。形式语义学主张逻辑化表达(如蒙太古语法),而认知语言学强调经验性语义生成(如概念隐喻理论)。跨语言研究揭示普遍语义现象(如空间隐喻),但形式化面临二值逻辑局限性和深层语义嵌套的挑战。统一理论或可结合两种范式,为NLP带来突破:提升AI可解释性(如隐喻规则形式化)和增强语境适应能力(语义框架映射)。未来需借助认知科学与计算语言学的交叉研究,实现从语言理解到经验共情的跨越。原创 2025-07-14 17:24:17 · 562 阅读 · 0 评论