标题:Django+Vue+协同过滤 基于机器学习的酒店推荐系统
1. 系统架构设计
1.1 整体架构分层
-
前端展示层:Vue.js构建的响应式用户界面
-
API服务层:Django REST Framework提供数据接口
-
推荐引擎层:协同过滤算法核心
-
机器学习层:用户偏好建模与预测
-
数据存储层:混合存储架构(MySQL+Redis+MongoDB)
-
数据采集层:酒店数据与用户行为采集
1.2 技术组件拓扑
text
用户端(Vue) ↔ 管理端(Vue) ↔ Django API ↔ 推荐服务 ↔ 数据存储 ↑ 实时计算引擎 ↑ 用户行为采集系统
2. 核心功能模块
2.1 酒店数据中心
-
基础信息管理:酒店属性、房型、设施等
-
动态数据整合:价格、房态、促销信息
-
地理数据服务:位置坐标、周边POI
-
媒体资源管理:图片、视频、VR展示
2.2 智能推荐模块
-
用户协同过滤:基于相似用户偏好推荐
-
酒店协同过滤:基于酒店相似性推荐
-
情境感知推荐:结合时间/位置/场景
-
混合推荐策略:加权融合多算法结果
-
实时个性化:基于会话行为的动态调整
2.3 用户分析模块
-
画像构建:旅行偏好、消费习惯
-
行为分析:浏览路径、转化漏斗
-
分群管理:商务/休闲/家庭等客群
-
价值评估:RFM模型客户分层
3. 关键数据模型
3.1 酒店数据模型
-
静态属性:星级、品牌、开业时间等
-
空间特征:地理位置、周边环境
-
服务设施:餐饮、会议、休闲等
-
动态数据:实时价格、房态、评价
3.2 用户画像模型
-
基础属性:人口统计信息
-
历史行为:搜索、浏览、预订记录
-
偏好特征:酒店类型、价格区间
-
情境特征:出行目的、同行人员
3.3 交互数据模型
-
显式反馈:评分、收藏、评价
-
隐式反馈:浏览时长、比价行为
-
交易数据:订单详情、取消记录
-
上下文数据:搜索时间、设备类型
4. 推荐系统流程
4.1 离线计算流程
-
用户-酒店交互矩阵构建
-
相似度矩阵计算
-
潜在因子分解
-
候选集预生成
-
模型评估优化
4.2 在线推荐流程
-
用户情境识别
-
多策略推荐生成
-
业务规则过滤
-
多样性控制
-
结果排序返回
4.3 实时更新机制
-
用户行为事件采集
-
短期兴趣模型更新
-
推荐结果缓存刷新
-
异常行为检测
5. 酒店领域特色
5.1 情境因素考量
-
出行目的(商务/休闲)
-
季节与节假日
-
本地活动与展会
-
天气状况影响
5.2 特殊需求处理
-
连住优惠推荐
-
多房型组合
-
团体预订优化
-
长住客偏好
6. 评估与优化
6.1 推荐效果评估
-
点击率(CTR)
-
转化率提升
-
间夜量增长
-
平均预订价值
-
用户满意度
6.2 系统优化方向
-
算法融合深度学习
-
丰富上下文特征
-
实时性增强
-
可解释性改进
-
冷启动解决方案
7. 扩展性设计
7.1 数据扩展
-
第三方数据接入
-
用户生成内容整合
-
竞品数据对比
-
社会化推荐引入
7.2 功能扩展
-
动态打包推荐
-
忠诚度计划集成
-
价格敏感度分析
-
预测性推荐
8. 典型应用场景
-
首页个性化推荐:基于用户历史的酒店推荐
-
搜索结果排序:情境感知的结果优化
-
购物车推荐:配套服务与升级推荐
-
会员营销:精准促销推送
-
动态打包:酒店+交通+景点组合
9. 系统价值体现
-
转化提升:精准匹配用户需求
-
收益优化:高价值推荐策略
-
体验增强:个性化服务感受
-
运营效率:数据驱动决策
-
客户洞察:深度理解用户偏好