计算机毕设源码-大数据深度学习算法 Django+Vue+协同过滤 基于机器学习的酒店推荐系统

标题:Django+Vue+协同过滤 基于机器学习的酒店推荐系统

1. 系统架构设计

1.1 整体架构分层

  • 前端展示层:Vue.js构建的响应式用户界面

  • API服务层:Django REST Framework提供数据接口

  • 推荐引擎层:协同过滤算法核心

  • 机器学习层:用户偏好建模与预测

  • 数据存储层:混合存储架构(MySQL+Redis+MongoDB)

  • 数据采集层:酒店数据与用户行为采集

1.2 技术组件拓扑

text

用户端(Vue) ↔ 管理端(Vue) ↔ Django API ↔ 推荐服务 ↔ 数据存储
                                     ↑
                              实时计算引擎
                                     ↑
                          用户行为采集系统

2. 核心功能模块

2.1 酒店数据中心

  • 基础信息管理:酒店属性、房型、设施等

  • 动态数据整合:价格、房态、促销信息

  • 地理数据服务:位置坐标、周边POI

  • 媒体资源管理:图片、视频、VR展示

2.2 智能推荐模块

  • 用户协同过滤:基于相似用户偏好推荐

  • 酒店协同过滤:基于酒店相似性推荐

  • 情境感知推荐:结合时间/位置/场景

  • 混合推荐策略:加权融合多算法结果

  • 实时个性化:基于会话行为的动态调整

2.3 用户分析模块

  • 画像构建:旅行偏好、消费习惯

  • 行为分析:浏览路径、转化漏斗

  • 分群管理:商务/休闲/家庭等客群

  • 价值评估:RFM模型客户分层

3. 关键数据模型

3.1 酒店数据模型

  • 静态属性:星级、品牌、开业时间等

  • 空间特征:地理位置、周边环境

  • 服务设施:餐饮、会议、休闲等

  • 动态数据:实时价格、房态、评价

3.2 用户画像模型

  • 基础属性:人口统计信息

  • 历史行为:搜索、浏览、预订记录

  • 偏好特征:酒店类型、价格区间

  • 情境特征:出行目的、同行人员

3.3 交互数据模型

  • 显式反馈:评分、收藏、评价

  • 隐式反馈:浏览时长、比价行为

  • 交易数据:订单详情、取消记录

  • 上下文数据:搜索时间、设备类型

4. 推荐系统流程

4.1 离线计算流程

  1. 用户-酒店交互矩阵构建

  2. 相似度矩阵计算

  3. 潜在因子分解

  4. 候选集预生成

  5. 模型评估优化

4.2 在线推荐流程

  1. 用户情境识别

  2. 多策略推荐生成

  3. 业务规则过滤

  4. 多样性控制

  5. 结果排序返回

4.3 实时更新机制

  1. 用户行为事件采集

  2. 短期兴趣模型更新

  3. 推荐结果缓存刷新

  4. 异常行为检测

5. 酒店领域特色

5.1 情境因素考量

  • 出行目的(商务/休闲)

  • 季节与节假日

  • 本地活动与展会

  • 天气状况影响

5.2 特殊需求处理

  • 连住优惠推荐

  • 多房型组合

  • 团体预订优化

  • 长住客偏好

6. 评估与优化

6.1 推荐效果评估

  • 点击率(CTR)

  • 转化率提升

  • 间夜量增长

  • 平均预订价值

  • 用户满意度

6.2 系统优化方向

  • 算法融合深度学习

  • 丰富上下文特征

  • 实时性增强

  • 可解释性改进

  • 冷启动解决方案

7. 扩展性设计

7.1 数据扩展

  • 第三方数据接入

  • 用户生成内容整合

  • 竞品数据对比

  • 社会化推荐引入

7.2 功能扩展

  • 动态打包推荐

  • 忠诚度计划集成

  • 价格敏感度分析

  • 预测性推荐

8. 典型应用场景

  1. 首页个性化推荐:基于用户历史的酒店推荐

  2. 搜索结果排序:情境感知的结果优化

  3. 购物车推荐:配套服务与升级推荐

  4. 会员营销:精准促销推送

  5. 动态打包:酒店+交通+景点组合

9. 系统价值体现

  1. 转化提升:精准匹配用户需求

  2. 收益优化:高价值推荐策略

  3. 体验增强:个性化服务感受

  4. 运营效率:数据驱动决策

  5. 客户洞察:深度理解用户偏好

代码实现:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值