【学术会议前沿信息|科研必备】2025年9月能源材料与电力工程、电子材料与信息工程、公共服务与经济管理、生物医学与生物信息等领域国际学术会议
【学术会议前沿信息|科研必备】2025年9月能源材料与电力工程、电子材料与信息工程、公共服务与经济管理、生物医学与生物信息等领域国际学术会议
文章目录
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可扫描博文下方二维码 “
学术会议小灵通
”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/148877490
第十一届能源材料与电力工程国际会议(ICEMEE 2025)
- 2025 11th International Conference on Energy Materials and Electrical Engineering
- 📅 时间:2025年8月29-31日 | 🌍 地点:西藏·林芝
- ✨ 亮点:5天快速审稿,探索新型能源材料、高压电气与藏区电力发展,EI+Scopus权威认证!
- 🔍 检索:EI Compendex、Scopus
- 🎯 适合人群:能源材料、电力设备、高海拔电力技术方向的硕博生
- 领域:光伏阵列智能优化
import numpy as np
def optimize_solar_layout(terrain, num_panels):
# 地形数据:高度矩阵,阴影分布
population_size = 50
population = np.random.randint(0, terrain.shape[0], (population_size, num_panels, 2))
for generation in range(100):
# 评估适应度(总光照吸收)
fitness = [calculate_energy(terrain, ind) for ind in population]
# 选择最优个体
elite_idx = np.argsort(fitness)[-5:]
elite = population[elite_idx]
# 交叉与变异
new_pop = []
for _ in range(population_size - 5):
p1, p2 = elite[np.random.choice(5, 2, replace=False)]
child = crossover(p1, p2)
child = mutate(child, terrain.shape)
new_pop.append(child)
population = np.vstack([elite, new_pop])
return population[np.argmax(fitness)]
def calculate_energy(terrain, positions):
total_energy = 0
for x, y in positions:
# 考虑坡度朝向和阴影影响
slope_factor = 1 - abs(terrain[x,y] / 90)
total_energy += solar_irradiance * slope_factor
return total_energy
第五届电子材料与信息工程国际会议(EMIE 2025)
- 5th Int’l Conf. on Electronic Materials & Info. Engineering
- ⏰ 时间:2025.9.12-14 | 🧊 地点:中国·哈尔滨(冰雪大世界的电子风暴眼)
- ✨ 亮点:7天极速通关三轮审核!突破半导体材料与信息器件关键技术瓶颈
- 📚 检索:EI+Scopus双库100%稳定收录(往届全检索!)
- 👥 适合:微电子/材料工程硕博生,急需新型电子器件与集成系统创新方案!
- 材料特性预测
from sklearn.neural_network import MLPRegressor
def material_property_prediction(features, target):
model = MLPRegressor(hidden_layer_sizes=(50,))
model.fit(features, target)
return model
# 测试
X = np.array([[0.5, 0.3], [0.6, 0.4], [0.7, 0.5]]) # [成分A, 成分B]
y = np.array([120, 150, 180]) # 材料强度
model = material_property_prediction(X, y)
print(f"新材料预测强度: {model.predict([[0.65, 0.45]])[0]:.1f}")
- 电路优化设计
import cvxpy as cp
def circuit_optimization():
R = cp.Variable(3) # 三个电阻值
constraints = [R >= 10, R <= 1000]
objective = cp.Minimize(cp.sum(R))
prob = cp.Problem(objective, constraints)
prob.solve()
return R.value
print(f"优化电阻值: {circuit_optimization()}")
第四届公共服务与经济管理国际会议(PESD 2025)
- (4th Int’l Conf. on Public Service, Econ. Mgmt. & Sustainable Dev.)
- ⏰ 时间:2025.9.26-28 | 🌸 地点:中国·大理
- ✨ 亮点:Atlantis Press权威出版!7天解锁乡村振兴与低碳经济创新范式
- 📚 检索:CPCI+CNKI双轨护航(国际国内双认证)
- 👥 适合:公共政策/经济管理研究者,亟需生态补偿与数字政务破局方案!
- 领域:城市服务资源调度优化
from ortools.linear_solver import pywraplp
def optimize_resource_allocation(demands, resources):
solver = pywraplp.Solver.CreateSolver('SCIP')
# 决策变量:x[i,j]表示区域i分配到资源j的数量
x = {}
for i in range(len(demands)):
for j in range(len(resources)):
x[i, j] = solver.IntVar(0, resources[j], f'x_{i}_{j}')
# 约束:满足最低需求
for i, demand in enumerate(demands):
solver.Add(sum(x[i, j] for j in range(len(resources))) >= demand.min_level)
# 约束:资源上限
for j, resource in enumerate(resources):
solver.Add(sum(x[i, j] for i in range(len(demands))) <= resource.capacity)
# 目标函数:最小化短缺成本 + 运输成本
shortage_cost = sum((demands[i].weight *
(demands[i].target - sum(x[i,j] for j in range(len(resources)))))
for i in range(len(demands)))
transport_cost = sum(x[i,j] * distances[i][j]
for i in range(len(demands))
for j in range(len(resources)))
solver.Minimize(shortage_cost + 0.5 * transport_cost)
status = solver.Solve()
return {f'区域{i}': [x[i,j].solution_value() for j in range(len(resources))]
for i in range(len(demands))}
第五届生物医学与生物信息工程国际会议(ICBBE 2025)
- (5th Int’l Conf. on Biomedicine & Bioinformatics Eng.)
- ⏰ 时间:2025.9.26-28 | ⚔️ 地点:中国·沈阳
- ✨ 亮点:SPIE光学工程金标出版(ISSN:0277-786X)!7工作日极速反馈基因编辑与医疗AI融合应用
- 📚 检索:SPIE+EI+Scopus黄金三角(100%稳定!)
- 👥 适合:生物医学工程硕博生,急需单细胞测序与穿戴式诊疗创新方案!
- 领域:基因序列疾病关联分析
import tensorflow as tf
from tensorflow.keras.layers import Bidirectional, LSTM, Dense
def build_gene_model(seq_length=1000, vocab_size=4):
model = tf.keras.Sequential([
tf.keras.layers.Embedding(vocab_size+1, 32, input_length=seq_length),
Bidirectional(LSTM(64, return_sequences=True)),
Bidirectional(LSTM(32)),
Dense(128, activation='relu'),
Dense(1, activation='sigmoid') # 致病概率
])
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
return model
# 使用示例:
# model = build_gene_model()
# model.fit(X_train, y_train, epochs=20,
# validation_data=(X_val, y_val))
# model.predict(new_dna_sequence)