【机器学习|学习笔记】聚类(Clustering)vs 降维(Dimensionality Reduction)对比详解?

【机器学习|学习笔记】聚类(Clustering)vs 降维(Dimensionality Reduction)对比详解?

【机器学习|学习笔记】聚类(Clustering)vs 降维(Dimensionality Reduction)对比详解?



欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/148877490


🧠 一、什么是聚类(Clustering)?

✅ 定义:

  • 聚类是一种无监督学习(Unsupervised Learning)方法,它的目标是:将数据划分为多个相似的子集(簇),使得同一簇内的数据相似度高,不同簇之间差异大。

📌 聚类应用场景:

  • 客户分群(Marketing Segmentation)
  • 图像分割
  • 社交网络分析
  • 异常检测(如信用卡欺诈)

🧪 Python 示例:使用 K-Means 聚类

from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

# 生成示例数据
X, y = make_blobs(n_samples=300, centers=3, random_state=42)

# 应用 KMeans 聚类
kmeans = KMeans(n_clusters=3, random_state=42)
y_pred = kmeans.fit_predict(X)

# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=y_pred, cmap='viridis', s=50)
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
            color='red', marker='x', label='Centroids')
plt.title("KMeans Clustering")
plt.legend()
plt.show()

🧠 二、什么是降维(Dimensionality Reduction)?

✅ 定义:

  • 降维是将高维数据压缩到低维空间的一种方法,同时尽可能保留原数据的重要特征结构。

📌 降维的目的:

  • 可视化(如将 100 维压缩到 2D)
  • 加快算法效率
  • 降低噪声影响
  • 避免“维度灾难”

常见的降维方法:

方法类型特点
PCA(主成分分析)线性降维最大化数据方差方向
t-SNE非线性降维保留局部邻居结构,适合可视化
UMAP非线性降维比 t-SNE 更快,更结构化
LDA有监督降维聚焦于类别区分

🧪 Python 示例:使用 PCA 可视化高维数据

from sklearn.decomposition import PCA
from sklearn.datasets import load_digits
import matplotlib.pyplot as plt

# 加载高维数据
digits = load_digits()
X = digits.data     # 64维
y = digits.target   # 标签

# 将64维降到2维
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

# 可视化
plt.figure(figsize=(8, 6))
scatter = plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='tab10', s=15)
plt.legend(*scatter.legend_elements(), title="Digits")
plt.title("PCA Visualization of Digits Dataset")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.grid(True)
plt.show()

🔄 三、聚类 vs 降维:关系与区别

维度聚类(Clustering)降维(Dimensionality Reduction)
类型无监督学习通常也是无监督(部分有监督)
目标找到数据中的群组结构压缩数据维度,保持主要特征信息
输出每个样本的簇标签每个样本的低维表示
应用场景数据分群、异常检测可视化、加速训练、特征选择
相互关系降维可用于聚类前的数据预处理聚类结果可在降维后空间中更好地展示

✅ 总结一句话:

  • 聚类是将样本划分成相似组的过程,降维是把高维样本压缩到低维空间的技术,它们常常联合使用:先降维再聚类,或降维可视化聚类结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不想努力的小土博

您的鼓励是我创作的动力!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值