引言
随着人工智能技术的发展,特别是大型语言模型(LLM)如 GPT 系列的应用越来越广泛,Java 作为一种强大的后端编程语言,在构建 AI 驱动型应用方面发挥着重要作用。本文将介绍如何使用 OpenAI 官方 Java SDK 结合 Spring Boot 和 Spring AI 框架,实现 LLM 的对话能力及对外部服务的工具调用功能。通过实际案例展示如何让模型与外部系统交互,解决传统 AI 应用的信息孤岛问题。
环境准备
确保你的开发环境满足以下条件:
必要组件
- JDK 17+(推荐 Amazon Corretto 或 Azure JDK)
- Maven 3.8+ / Gradle 7.5+
- OpenAI API Key(获取方法见下文)
- Spring Boot 3.2+(需启用 AI 模块)
获取 OpenAI API Key
访问 OpenAI Dashboard 创建一个新的 API key,并将其配置为环境变量或直接在 application.yml
中引用。
对于国内用户,由于网络限制,建议使用中转代理服务以稳定连接至 OpenAI API。
核心实现步骤
1. 添加 SDK 依赖(pom.xml)
为了集成 OpenAI SDK 到项目中,请在 pom.xml
文件中添加如下依赖:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
<version>0.7.0</version>
</dependency>
2. 工具类定义(DateTimeTools.java)
创建一个组件类用于执行特定任务,例如获取当前时间:
@Component
public class DateTimeTools {
@Tool(
name = "get_current_time",
description = "获取指定时区的当前日期时间",
requestArguments = {
@RequestArgument(
name = "timezone",
description = "时区标识,例如 Asia/Shanghai",
required = true,
schema = @Schema(type = "string")
)
}
)
public String getCurrentTime(String timezone) {
return ZonedDateTime.now(ZoneId.of(timezone)).format(DateTimeFormatter.ISO_OFFSET_DATE_TIME);
}
}
3. 控制器实现(ChatController.java)
创建控制器用于接收用户的聊天请求,并调用 ChatClient 进行对话处理:
@RestController
@RequestMapping("/chat")
public class ChatController {
private final ChatClient chatClient;
public ChatController(OpenAiChatModel openAiChatModel, List<Object> tools) {
this.chatClient = ChatClient.builder()
.chatModel(openAiChatModel)
.tools(tools)
.build();
}
@PostMapping
public ChatResponse chat(@RequestBody ChatRequest request) {
return chatClient.call(request.getMessage());
}
}
4. 处理工具调用结果
当模型返回需要调用某个工具时,我们需要手动触发该工具并将其结果反馈给模型继续推理:
if (response.getToolUse() != null) {
for (ToolUse toolUse : response.getToolUse()) {
switch (toolUse.getToolName()) {
case "get_current_time":
String timezone = toolUse.getRequestArguments().get("timezone");
String result = dateTimeTools.getCurrentTime(timezone);
chatClient.sendUserMessage(result); // 将结果作为上下文反馈给模型
break;
// 其他工具逻辑
}
}
}
关键配置解析
application.yml 配置示例
spring:
ai:
openai:
api-key: ${OPENAI_API_KEY}
base-url: https://api.openai.com/v1
chat:
model-name: gpt-4-turbo
temperature: 0.3
tool-use:
enabled: true
response-field: tool_use
temperature
: 控制输出的随机性,数值越低越稳定。tool-use.enabled
: 是否启用工具调用功能。response-field
: 指定返回 JSON 中用于识别工具调用的字段名。
高级功能实现
多工具并行调用
你可以注册多个工具,并支持并发调用,以提高响应效率:
@Bean
public List<Tool> toolList(DateTimeTools dateTimeTools, WeatherService weatherService) {
return List.of(
Tool.builder()
.name("get_weather")
.function(weatherService::getCurrentWeather)
.build(),
Tool.builder()
.name("get_current_time")
.function(dateTimeTools::getCurrentTime)
.build()
);
}
异常处理机制
为防止工具调用失败导致整个对话中断,建议添加全局异常处理器:
@ControllerAdvice
public class AiExceptionHandler {
@ExceptionHandler(ToolInvocationException.class)
public ResponseEntity<String> handleToolError(ToolInvocationException ex) {
log.error("工具调用失败: {}", ex.getMessage());
return ResponseEntity.status(HttpStatus.SERVICE_UNAVAILABLE).body("外部服务暂时不可用,请稍后重试");
}
}
性能优化建议
连接池配置
spring:
ai:
openai:
connection:
max-total: 20
max-per-route: 5
合理设置连接池大小,避免频繁建立连接带来的性能损耗。
缓存策略
对重复调用的工具结果进行缓存,提升响应速度:
@Cacheable(value = "toolResults", key = "#toolName + #params")
public String cachedToolCall(String toolName, Map<String, Object> params) {
// 实际调用逻辑
}
监控指标
集成 Micrometer,记录调用次数、响应时间等关键指标:
@Bean
public MeterRegistryCustomizer<MeterRegistry> metricsCommonTags() {
return registry -> registry.config().commonTags("application", "ai-service");
}
实际应用场景
场景一:智能客服系统
- 用户询问订单状态 → 调用 ERP 系统接口查询订单详情
- 用户咨询退换货流程 → 调用知识库工具提供标准回复
场景二:数据分析助手
@Tool(name = "db_query")
public List<SalesData> querySales(String region, Date start, Date end) {
return salesRepository.findByRegionAndPeriod(region, start, end);
}
- 用户输入:“帮我查一下华东地区上个月的销售额”
- 模型调用
db_query
工具并返回数据,再生成自然语言分析报告
场景三:自动化工作流
最佳实践与注意事项
- 保持 Prompt 清晰简洁:避免模糊指令,模型更容易理解意图。
- 工具命名规范统一:如
get_user_info
,send_email
,便于维护和扩展。 - 严格验证工具参数:防止非法或缺失参数导致运行时错误。
- 日志追踪与调试:记录每次调用的输入输出,便于问题排查。
- 权限控制与安全防护:对敏感工具进行权限校验,防止未授权访问。
- 异步调用优化体验:对于耗时较长的工具,考虑采用异步回调机制。
- 多模型支持设计:预留适配接口,方便未来切换其他 LLM 模型。
总结
通过 Spring AI 框架与 OpenAI SDK 的深度集成,Java 开发者可以轻松实现以下能力:
- 快速构建具备对话能力的大模型应用;
- 安全调用外部服务工具并与模型交互;
- 构建企业级智能应用架构;
- 实现与现有 IT 系统无缝对接。
参考资料
📌 如果你觉得这篇文章对你有帮助,欢迎点赞、收藏或分享给更多开发者朋友!
📧 如有任何疑问或合作需求,欢迎留言交流,共同探索 Java 与 AI 结合的无限可能!