快速排序VS归并排序:谁更胜一筹?

今天我们为大家介绍两个排序算法,快速排序和归并排序。

一、两者的时间复杂度和稳定性对比

1.快速排序(Quick Sort)

  • 平均时间复杂度:O(n log n)
  • 最坏时间复杂度:O(n²)
  • 最好时间复杂度:O(n log n)

2.归并排序(Merge Sort)

  • 平均时间复杂度:O(n log n)
  • 最坏时间复杂度:O(n log n)
  • 最好时间复杂度:O(n log n)

总结:两者平均时间复杂度相同,但快速排序在最坏情况下性能会退化,而归并排序的时间复杂度更稳定。

所以建议大家通常使用归并排序!!!

二、思路介绍

1.快速排序

快速排序是一种高效的分治排序算法,其核心思路是:通过一趟排序将数组分为两部分,其中一部分的所有元素都比另一部分小,然后递归地对这两部分进行排序。

具体步骤如下:

1.1选择基准(确定分界点)
从数组中挑选一个元素作为 "基准"(通常选第一个、最后一个或中间元素,也可随机选择)。eg:q[l]、q[(l+r)/2]、q[r]。

1.2分区(调整区间)
重新排列数组,所有比基准值小的元素放在基准前面,所有比基准值大的元素放在基准后面(相等的元素可放任意一侧)。分区结束后,基准元素处于数组的中间位置。

图示:

1.3递归排序
递归地对基准左侧的子数组和右侧的子数组重复上述步骤,直到子数组长度为 0 或 1(天然有序)。

1.4难点:调整区间

2.归并排序

归并排序(Merge Sort)是一种基于分治思想的稳定排序算法,其核心思路是:将数组不断分割为更小的子数组,直到每个子数组只包含一个元素(天然有序),然后逐步将这些有序子数组合并成更大的有序数组,最终得到完整的有序数组。

具体步骤如下

1.1选择基准(确定分界点)
从数组中挑选一个元素作为 "基准"(一般为中点)eg:mid = (l+r)/2。

图示:

1.2递归处理两个部分(left、right)
递归地对基准左侧的子数组和右侧的子数组重复上述步骤。

1.3合并(合二为一)
将两个已排序的子数组合并成一个更大的有序数组。合并时需创建临时空间,比较两个子数组的元素,按顺序放入临时空间,最后将临时空间的内容复制回原数组。

1.4难点:合并。

三、具体代码

1.快速排序代码

#include<iostream>
using namespace std;

// 定义数组最大长度常量
const int N = 100010;
// 存储待排序数据的数组
int q[N];


//快速排序函数
void quick_sort(int q[], int l, int r)
{
    // 递归终止条件:如果区间长度小于等于1,说明已经有序,直接返回
    if (l >= r) return;
    
    // 选择基准值x(这里选择区间左端点元素作为基准)
    int x = q[l];
    // 定义左右指针,初始值分别为区间外左右各一位
    // 这样可以统一后续的do-while循环逻辑
    int i = l - 1, j = r + 1;

    // 分区过程:将小于x的元素放左边,大于x的元素放右边
    while (i < j)
    {
        // 从左向右找到第一个大于等于x的元素
        do i++; while (q[i] < x);
        // 从右向左找到第一个小于等于x的元素
        do j--; while (q[j] > x);
        // 如果不满足前面两个分区条件且左右指针还未相遇,则交换这两个元素
        if (i < j) swap(q[i], q[j]);
    }
    
    // 递归排序左半部分:区间[l, j]
    quick_sort(q, l, j);
    // 递归排序右半部分:区间[j+1, r]
    quick_sort(q, j + 1, r);
}

int main()
{
    int n;
    // 读取待排序元素的数量
    cin >> n;
    // 读取n个待排序的元素
    for (int i = 0; i < n; i++)
    {
        cin >> q[i];
    }
    
    // 调用快速排序函数,排序整个数组(区间[0, n-1])
    quick_sort(q, 0, n - 1);
    
    // 输出排序后的结果
    for (int i = 0; i < n; i++)
    {
        cout << q[i] << ' ';
    }
    return 0;
}

下面我们具体讲一下:

怎么去调整区间???

这里我们采用的是一个头指针跟一个尾指针,不断移动确保i的左边 <基准, j的右边 >基准。当不满足条件时就交换两个值。

图示:

这样操作以后,左边就是小于基准的部分,右边是大于基准值的部分!!!

最后分别对两个部分进行一个递归,就ok了!

注意点:不要忘记递归的结束条件!

2.归并排序代码

#include<iostream>
using namespace std;

// 定义数组最大容量
const int N = 100010;

// q[]: 存储待排序的原始数组
// tmp[]: 临时数组,用于合并过程中存储中间结果
int q[N];
int tmp[N];

//归并排序函数
void merge_sort(int q[], int l, int r)
{
    // 递归终止条件:如果区间长度小于等于1,说明已经有序,直接返回
    if (l >= r) return;
    
    // 计算区间中点,将数组分为左右两部分
    int mid = (l + r) / 2;

    // 递归排序左半部分 [l, mid] 和右半部分 [mid+1, r]
    merge_sort(q, l, mid);
    merge_sort(q, mid + 1, r);
    
    // 合并两个已排序的子数组
    int i = l;          // 左半部分的起始指针
    int j = mid + 1;    // 右半部分的起始指针
    int k = 0;          // 临时数组的起始指针
    
    // 比较左右两部分的元素,按从小到大的顺序放入临时数组
    while (i <= mid && j <= r)
    {
        if (q[i] < q[j])
            tmp[k++] = q[i++];  // 左半部分元素更小,放入临时数组
        else
            tmp[k++] = q[j++];  // 右半部分元素更小,放入临时数组
    }
    
    // 处理左半部分剩余的元素
    while (i <= mid)
        tmp[k++] = q[i++];
    
    // 处理右半部分剩余的元素
    while (j <= r)
        tmp[k++] = q[j++];
    
    // 将临时数组中合并好的结果复制回原数组的对应区间
    for (int i = l, j = 0; i <= r; i++, j++)
        q[i] = tmp[j];
}

int main()
{
    int n;
    // 读取待排序元素的数量
    cin >> n;
    
    // 读取n个待排序的元素
    for (int i = 0; i < n; i++)
    {
        cin >> q[i];
    }
    
    // 调用归并排序函数,排序整个数组(区间[0, n-1])
    merge_sort(q, 0, n - 1);
    
    // 输出排序后的结果
    for (int i = 0; i < n; i++)
    {
        cout << q[i] << ' ';
    }
    
    return 0;
}

下面来具体讲讲:

关于如何进行合并的:

前面我们已经通过递归把两个部分排好了顺序,现在我们需要把两个部分合并为一个部分,即归并。

我们需要不断比较两个部分left和right的数,把满足条件的数据放入到临时数组tmp中!!!

图示:

四、总结

如果不会计算时间复杂度直接选归并排序,稳过的哈。大家在写代码的时候一定不要忘记了,递归的结束条件!学算法一定要去理解到思路,再尝试将思路转变成代码!欲望以提升热忱,毅力以磨平高山。大家共同努力!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值