概论
并查集定义
并查集是一种树型的数据结构,用于处理不相交集合的合并及查询问题。它可以用来维护无向图的连通性,判断两个元素是否属于同一集合,或者在构建最小生成树的算法中使用。
并查集是一个面试、竞赛经常会用遇到的一个数据结构,因为其代码的简短及思路的精巧的特点。
现在我们知道了并查集的定义和学习它的作用,而并查集到底是用该干嘛的呢?
主要功能
它的主要功能就是实现:
1.将两个集合合并
2.询问两个元素是否在同一个元素当中
引论
在学习并查集之前,我们先想一下,我们用暴力的做法该怎么做呢?
首先,我们可以创建一个数组belong[],其中每一个元素可以存储其属于哪一个集合
belong[x] = a;
if( belong[x] == belong[y] )
上面的代码表示数组belong[]中元素x在集合a中,如果数组belong[]中的元素x和y值相同,代表其两个元素在同一个集合中。我们可以快速的判断x和y是否在同一个集合中,它的时间复杂度O(1)。但是如果我们想要合并两个元素呢,就要遍历其中一个集合的全部元素,其时间复杂度是O(N)的,但在算法题中,我想要重复的合并两个集合,这样的时间复杂度,可想而知是十分的耗时的,
而我们将要学习的并查集,可以很好的解决这个难题,他可以快速地实行这两个操作,在某种程度上可以将时间复杂度"近乎"O(1)。
接下来我们就开始正式的了解并查集
基本原理
首先用树的形式来维护所有的集合,即每个集合有树表示。每一个集合的编号就是其根节点的编号,对于其中的每一个点(元素) 存储的都是其父节点是谁,p[x]表示x的父节点,当我们想要求某一点是哪一个集合的时候,都可以进行判断其父节点是否为树根,若不是再向上找,直到找到树根为止。
提出问题
现在我们想要写出代码之前,还需要思考几个问题:
问题一:如何判断树根
if(p[x] == x)
在树里根节点存储的是x,其他所有的元素除了根节点之外存储的都是其父节点
问题二:如何求x的集合编号
while(p[x] != x) x = p[x];
这里表示自p[x]元素开始,自下而上的遍历树,直到遍历到树根为止。
问题三:如何合并两个集合
p[x] = y;
这里可以把其中一个集合当成另一个集合的儿子,即把其中一颗树插到另一棵树的某一个位置就可以了。
我们不妨假设px是x的集合编号,py是y的集合编号,直接简单粗暴的将p[x] = y就可以了,把px的根节点的值指向y,此后px[]成为y的儿子。
优化:路径压缩
如果仅仅是使用上面的操作,我们这个所写出来的代码时间复杂度还是蛮高的。所以我们需要在算法上进行进一步的优化——路径压缩
我们在上面的问题二,每一次进行询问都需要从都昂起那这个点遍历到根节点,遍历的次数和我们树的深度是成正比的,这是我们就需要在此处进行优化了
此处的优化需要p[x]进行遍历一遍,在x遍历到根节点时,其每一个遍历的元素包含x都指向根节点
在进行这次遍历之后,此后该集合的所有元素都指向了根节点,从而实现了路径压缩。在之后对于元素的调用中,时间复杂度都会是O(1)。
代码实现
现在我们知道了并查集的核心路径压缩的实现原理,那我们该如何用代码带描述呢?
现在有一个模板题
题目:
一共有 n 个数,编号是 1∼n,最开始每个数各自在一个集合中。
现在要进行 m 个操作,操作共有两种:
M a b
,将编号为 a 和 b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;Q a b
,询问编号为 a 和 b 的两个数是否在同一个集合中;
输入格式
第一行输入整数 n 和 m。
接下来 m 行,每行包含一个操作指令,指令为 M a b
或 Q a b
中的一种。
输出格式
对于每个询问指令 Q a b
,都要输出一个结果,如果 aa 和 bb 在同一集合内,则输出 Yes
,否则输出 No
。
每个结果占一行。
数据范围
1≤n,m≤1e5
输入样例:
4 5 M 1 2 M 3 4 Q 1 2 Q 1 3 Q 3 4
输出样例:
Yes No Yes
代码描述
int n , m;
cin >> n >> m;
for(int i = 1;i <= n;i++) p[i] = i;
首先我们先初始化所有的节点,令他们都是指向自己的祖宗节点,即每一个数都是指向自己的点。
int find(int x)
{
if(p[x]!=x) p[x]=find(p[x]);//将所有的节点都指向父节点(祖宗节点)
return p[x];//返回祖宗节点
}
其次我们需要先创建一个find()函数,其作用就是实现查询操作,对于想要查询的x是属于哪个集合中。
因为根节点存储的是该集合的集合编号,其余节点都是存储的是其父节点,所以我们就可以利用递归来实现对于每一个点指向根节点,一边搜索根节点的值,一边实现路径压缩。
p[find(a)] = find(b);
这边我们来实现第二个操作,两个集合合并,集合a直接指向集合b,成为集合b的儿子。
以上我们的并查集的基本操作已经实现,以下是题目的ac代码:
#include<iostream>
using namespace std;
const int N=1e5+10;
int p[N];
int find(int x)
{
if(p[x]!=x) p[x]=find(p[x]);//将所有的节点都指向父节点(祖宗节点)
return p[x]; //返回祖宗节点
}
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++) p[i]=i; //初始化所有的节点,都是指向自己的祖宗节点,即每一个数都是指向自己的点
while(m--)
{
char c;
int a,b;
cin>>c>>a>>b;
if(c=='M') p[find(a)]=find(b); //如果p[x]==y 即他们x和y是在一个区间内
else
{
if(find(p[a])==find(p[b])) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
}
return 0;
}
以下是模板题目链接:
P3367 【模板】并查集 - 洛谷 | 计算机科学教育新生态
连通块中点的数量
我们在上面的讲解中已经实现了并查集的两个基本操作,若我们想要搜索集合中点的数量,该怎么办呢?
这边我们要求的背景虽然是一个图,但是依然还是可以用并查集做的。
问题分析
我们现在需要实现三个操作:
C a b
,在点 a 和点 b 之间连一条边,a 和 b 可能相等;Q1 a b
,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;Q2 a
,询问点 a 所在连通块中点的数量;
操作一
假设我们这边已知有那么几个点,第一个操作就是在某两个之间连一条边(注意:这里的两个点可能相同,将其自己连成一个自环),当然也有可能两个点之间已经连过一条边了,进行多次的连边操作。
操作二
第二个操作我们要实现判断两个点是否在同一个连通块中。简单的来说,也就是判断两个点是否在在同一个集合内。下图的{ 1,2,3 } 就是在同一个连通块。
操作三
操作三就是查询某一个点所在的连通块中点的数量,这也是我们要解决的重点。我们如果把连通块看成集合的角度,就已知前两个操作我们已经在并查集实现了,现在就是解决操作三的问题。
代码实现
以下是题目描述:
给定一个包含 nn 个点(编号为 1∼n1∼n)的无向图,初始时图中没有边。
现在要进行 mm 个操作,操作共有三种:
C a b
,在点 a 和点 b 之间连一条边,a 和 b 可能相等;Q1 a b
,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;Q2 a
,询问点 a 所在连通块中点的数量;
输入格式
第一行输入整数 nn 和 mm。
接下来 mm 行,每行包含一个操作指令,指令为 C a b
,Q1 a b
或 Q2 a
中的一种。
输出格式
对于每个询问指令 Q1 a b
,如果 aa 和 bb 在同一个连通块中,则输出 Yes
,否则输出 No
。
对于每个询问指令 Q2 a
,输出一个整数表示点 aa 所在连通块中点的数量
每个结果占一行。
数据范围
1≤n,m≤1e5
输入样例:
5 5 C 1 2 Q1 1 2 Q2 1 C 2 5 Q2 5
输出样例:
Yes 2 3
代码描述
我们这边需要一个数组 size[ ] 来维护我们集合的大小,我们最开始的时候需要给每一个 size[ ] 初始化为 1,代表集合里面只有一个点。
for(int i=1;i<=n;i++)
{
p[i]=i;
cnt[i]=1;
}
而我们该如何去维护这个 size[ ] 变量呢?我们这边的 size[ ] 存储的是每一个集合中的点的数量,我们这边为了方便维护数组,不妨规定只有根节点的 size[ ] 才有意义。
我们在上文并查集的时候知道了,集合合并的时候,是将一个树的根节点直接插到另一个树的根节点的下面,我们不妨假设一个树为a,一个树为b,将a的根节点插到b上,此时树b为整合了a和b成为了较大的树,我们需要在此时更新size [ b ] 的值,size [ b ] += size [ a ];
我们在维护完数组 size [ ] 后就可以直接调用某一个树的根节点,进行访问该树所包含的节点个数。
int a;
cin>>a;
cout<<cnt[find(a)];
但是此时代码还不完全,想一想在合并的时候若 集合a 和 集合b 此时已经在同一个集合之下,就不需要合并了,直接跳过就可以,因此需要特判一下。
以下是对于这道题的具体代码
(注意:因为数组size[]会和库函数冲突,所以以下代码的变量名称直接换成cnt[]了)
#include<iostream>
#include<string>
using namespace std;
const int N=1e5+10;
int p[N],cnt[N]; //因为数组size[]会和库函数冲突,所以以下代码的变量名称直接换成cnt[]了
int find(int x)
{
if(p[x]!=x) p[x]=find(p[x]);
return p[x];
}
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
p[i]=i;
cnt[i]=1;
}
while(m--)
{
string ch;
cin>>ch;
if(ch[0]=='C')
{
int a,b;
cin>>a>>b;
if(find(a)==find(b)) continue;
cnt[find(b)]+=cnt[find(a)];
p[find(a)]=find(p[b]);
}
else if(ch[1]=='1')
{
int a,b;
cin>>a>>b;
if(find(p[a])==find(p[b])) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
else
{
int a;
cin>>a;
cout<<cnt[find(a)]<<endl;
}
}
}
以下是题目链接: