目录
一、AVL树的左旋
1. 为什么要进行左旋?
当(右子树的高度 - 左子树的高度)> 1 时,该树则不再为一个AVL树
原始失衡结构(右子树过高):
A (高度3)
\
B (高度2)
\
C (高度1)
左旋后:
- 左旋后,树的高度降低,且左右子树高度差缩小。
B (高度2)
/ \
A C (高度1)
2. 左旋图示分析
左旋的图示过程:
不断的从父节点找不平衡的点,以该点为支点,将根节点的右侧往左拉,进行左旋转
(例如 :图中1-1 中 的 6 节点为不平衡的点,以此进行左旋,则 6 变为根节点,4变为 6 的左子节点,7仍然是6 的右子节点,而 5 则成为了 4 的右子节点,3 仍为 4 的左子节点, 如图 1-2)
原始节点 图 1-1 左旋后节点 图 1-2
3.左旋代码实现
左旋代码思路:(图解:见图 1-3)
1.先创建一个新节点(newNode),值设为当前根节点的值
2.将新节点的左子树设为当前根节点的左子树 newNode.left = left
3.将新节点的右子树设为当前节点的右子树的左子节点 newNode.right = right.left
4.再将当前节点的值替换为右子节点的值 value = right.value
5.将当前节点的右子树变为当前节点右子树的右子树(意思就是将图 1-2 中的 6 置为空)
right = right.right
6.即当前节点的左子树就为新节点 left = newLeft
(自己动手画一遍更加清晰)
图 1-3 左旋后节点 图 1-2
//左旋转
private void leftRotate() {
//以当前根节点的值创建新的节点
Node newNode = new Node(value);
//将当前节点的左子树变成新节点的左子树
newNode.left = left;
//将当前节点的右子树的左子节点变成新节点的右子树
newNode.right = right.left;
//将当前节点的值替换成右子树的值
value = right.value;
//将当前右子树的右子节点变成当前节点的右子树
right = right.right;
//再将当前节点的左子树变成新的节点
left = newNode;
}
判断树的高度 :
//返回左子树的高度
public int leftHeight() {
if (left == null) {
return 0;
}
return left.height();
}
//返回右子树的高度
public int rightHeight() {
if (right == null) {
return 0;
}
return right.height();
}
//返回以该节点为根节点的树的高度
public int height() {
return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height() + 1);
}
二、AVL树的右旋
1. 为什么要进行右旋?
当(左子树的高度 - 右子树的高度)> 1 时,该树则不再为一个AVL树
失衡结构(LL型):
A (平衡因子 +2)
/
B (平衡因子 +1)
/
C
右旋后:
- 右旋后,B成为新的根节点,A变为B的右子节点,左子树高度降低,平衡因子恢复正常。
B
/ \
C A
2.右旋的代码分析:(图解过程与左旋类似)
右旋代码思路:
1.创建一个新节点(newNode),值为当前根节点的值
2.将新节点的右子树设为当前节点的右子树 newNode.right = right
3.将新节点的左子树设为当前节点的左子树的右子节点 newNode.left = left.right
4.将当前节点的值替换为当前节点左子节点的的值 value = left.value
5.将当前节点的左子树设为当前节点的左子树的左子树 left = left.left
6.最后当前节点的右子树设为新节点 right = newLeft
//右旋转
private void rightRotate() {
//将当前根节点为值设为新节点的值
Node newNode = new Node(value);
//将新节点的右子树设为当前节点的右子树
newNode.right = right;
//将新节点的左子树设为当前左子树的右子节点
newNode.left = left.right;
//将当前节点替换为当前节点的左子节点
value = left.value;
//将当前节点的左子树设为当前节点的左子树的左子树
left = left.left;
//最后将当前节点的右子树设为新节点
right = newNode;
}
三、双旋
1. 为什么要进行双旋?
双旋(先左旋再右旋,或先右旋再左旋)用于修复嵌套型失衡(如LR型或RL型),这类失衡无法通过单一旋转解决。
示例(LR型失衡)
原始结构:
A (平衡因子 +2)
/
B (平衡因子 -1)
\
C
步骤1:对B左旋:
A
/
C
/
B
步骤2:对A右旋:
C
/ \
B A
2.双旋代码实现
//当添加一个节点后,若(右子树的高度 - 左子树的高度)> 1,左旋转
if (rightHeight() - leftHeight() > 1) {
//如果他的右子树的左子树的高度大于他的右子树的右子树的高度
if (right != null && right.leftHeight() > right.rightHeight()) {
//先对右子节点进行右旋
right.rightRotate();
//在对当前节点进行左旋
leftRotate();
} else {
leftRotate();
}
return;
}
if (leftHeight() - rightHeight() > 1) {
if (left != null && left.rightHeight() > left.leftHeight()) {
left.leftRotate();
rightRotate();
} else {
rightRotate();
}
}
四、完整代码
public class AVLTreeDemo {
public static void main(String[] args) {
int[] arr = {4, 3, 6, 5, 7, 8};
AVLTree avlTree = new AVLTree();
for (int i = 0; i < arr.length; i++) {
avlTree.add(new Node(arr[i]));
}
System.out.println("中序遍历");
avlTree.infixOrder();
System.out.println("在没有处理前");
System.out.println("树的高度:" + avlTree.getRoot().height());
System.out.println("树的左子树的高度:" + avlTree.getRoot().leftHeight());
System.out.println("树的右子树的高度:" + avlTree.getRoot().rightHeight());
System.out.println("当前根节点=" + avlTree.getRoot());
System.out.println("根节点的左子节点 + " + avlTree.getRoot().right);
}
}
class AVLTree {
private Node root;
public Node getRoot() {
return root;
}
//创建二叉树
public void add(Node node) {
if (root == null) {
root = node;
} else {
root.add(node);
}
}
//删除节点
public Node search(int value) {
if (root == null) {//判断根节点是否为空
return null;
} else {
return root.search(value);
}
}
//删除的父节点
public Node searchParent(int value) {
if (root == null) {//判断根节点是否为空
return null;
} else {
return root.searchParent(value);
}
}
//删除node为根节点的二叉排序树的最小节点
public int delRightTreeMin(Node node) {
Node target = node;
//循环查找target右子树的左子节点,找到最小值
while (target.left != null) {
target = target.left;
}
//target指向了最小节点
delNode(target.value);
return target.value;
}
//删除节点
public void delNode(int value) {
if (root == null) {//判断根节点是否为空
return;
} else {
//查找目标节点
Node targetNode = search(value);
//如果目标节点为空,则没有找到要删除的节点
if (targetNode == null) {
return;
}
//表示二叉树中只有一个节点
if (root.left == null && root.right == null) {
root = null;
return;
}
//找到目标节点的父节点
Node parent = searchParent(value);
if (targetNode.left == null && targetNode.right == null) {
//判断目标节点是父节点的左子节点还是右子节点
if (parent.left != null && parent.left.value == value) {//要删除的节点是父节点的左子节点
parent.left = null;
} else if (parent.right != null && parent.right.value == value) {//要删除的节点是父节点的右子节点
parent.right = null;
}
} else if (targetNode.left != null && targetNode.right.value == value) {//删除有两棵树的节点
//将target节点的右子树的最小节点删除
int minVal = delRightTreeMin(targetNode.right);
targetNode.value = minVal;
} else {//删除只有一颗子树的节点
//要删除的节点有左子节点
if (targetNode.left != null) {
//如果要删除的节点是 parent 的左子节点
if (parent.left.value == value) {
parent.left = targetNode.left;
} else {//要删除的节点是 parent 的右子节点
parent.right = targetNode.left;
}
} else {//要删除的节点有右子节点
//如果要删除的节点是 parent 的左子节点
if (parent.left.value == value) {
parent.left = targetNode.right;
} else {//要删除的节点是 parent 的右子节点
parent.right = targetNode.right;
}
}
}
}
}
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("当前二叉树为空~");
}
}
}
class Node {
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
//返回左子树的高度
public int leftHeight() {
if (left == null) {
return 0;
}
return left.height();
}
//返回右子树的高度
public int rightHeight() {
if (right == null) {
return 0;
}
return right.height();
}
//返回以该节点为根节点的树的高度
public int height() {
return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height() + 1);
}
//左旋转
private void leftRotate() {
//以当前根节点的值创建新的节点
Node newNode = new Node(value);
//将当前节点的左子树变成新节点的左子树
newNode.left = left;
//将当前节点的右子树的左子节点变成新节点的右子树
newNode.right = right.left;
//将当前节点的值替换成右子树的值
value = right.value;
//将当前右子树的右子节点变成当前节点的右子树
right = right.right;
//再将当前节点的左子树变成新的节点
left = newNode;
}
//右旋转
private void rightRotate() {
//将当前根节点为值设为新节点的值
Node newNode = new Node(value);
//将新节点的右子树设为当前节点的右子树
newNode.right = right;
//将新节点的左子树设为当前左子树的右子节点
newNode.left = left.right;
//将当前节点替换为当前节点的左子节点
value = left.value;
//将当前节点的左子树设为当前节点的左子树的左子树
left = left.left;
//最后将当前节点的右子树设为新节点
right = newNode;
}
@Override
public String toString() {
return "Node{" +
"value=" + value +
'}';
}
//添加数据
public void add(Node node) {
if (node == null) {
return;
}
if (node.value < this.value) {
if (this.left == null) {
this.left = node;
} else {
//向左递归添加节点
this.left.add(node);
}
} else {
if (this.right == null) {
this.right = node;
} else {
//向右递归添加节点
this.right.add(node);
}
}
//当添加一个节点后,若(右子树的高度 - 左子树的高度)> 1,左旋转
if (rightHeight() - leftHeight() > 1) {
//如果他的右子树的左子树的高度大于他的右子树的右子树的高度
if (right != null && right.leftHeight() > right.rightHeight()) {
//先对右子节点进行右旋
right.rightRotate();
//在对当前节点进行左旋
leftRotate();
} else {
leftRotate();
}
return;
}
if (leftHeight() - rightHeight() > 1) {
if (left != null && left.rightHeight() > left.leftHeight()) {
left.leftRotate();
rightRotate();
} else {
rightRotate();
}
}
}
//查找当前要删除的节点
public Node search(int value) {
if (value == this.value) {//如果当前查找的节点等于要删除的节点就返回
return this;
} else if (value < this.value) {//当前查找的节点小于要删除的节点
if (this.left == null) {//如果左节点等于空就返回,表示没找到
return null;
}
//否则继续递归向左查找
return this.left.search(value);
} else {//当前查找的节点大于要删除的节点
if (this.right == null) {//如果右节点等于空就返回,没找到
return null;
}
//否则继续向右递归查找
return this.right.search(value);
}
}
//查找要删除节点的父节点
public Node searchParent(int value) {
//左节点不为空并且左节点下的子节点就是要删除的节点,右节点同理
if (this.left != null && this.left.value == value ||
this.right != null && this.right.value == value) {
return this;
} else {
//左节点不等于空并且要查找的左节点的值小于要删除的值
if (this.left != null && value < this.value) {
//向左递归查找
return this.left.searchParent(value);
} else if (this.right != null && value > this.value) {//右节点同理
//向右递归查找
return this.right.searchParent(value);
} else {//没有父节点
return null;
}
}
}
//中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}
}