平衡二叉树(AVL树)的左旋、右旋、双旋 --> java

目录

一、AVL树的左旋

1. 为什么要进行左旋?

 2. 左旋图示分析

 3.左旋代码实现

 判断树的高度 :

二、AVL树的右旋

1. 为什么要进行右旋?

 2.右旋的代码分析:(图解过程与左旋类似)

三、双旋

1. 为什么要进行双旋?

2.双旋代码实现

四、完整代码


一、AVL树的左旋

1. 为什么要进行左旋?

(右子树的高度 - 左子树的高度)> 1 时,该树则不再为一个AVL树

原始失衡结构(右子树过高):

A (高度3)
 \
  B (高度2)
   \
    C (高度1)

左旋后

  • 左旋后,树的高度降低,且左右子树高度差缩小。
B (高度2)
 / \
A   C (高度1)

 2. 左旋图示分析

\star 左旋的图示过程:

不断的从父节点找不平衡的点,以该点为支点,将根节点的右侧往左拉,进行左旋转

(例如 :图中1-1 中 的 6 节点为不平衡的点,以此进行左旋,则 6 变为根节点,4变为 6 的左子节点,7仍然是6 的右子节点,而 5 则成为了 4 的右子节点,3 仍为 4 的左子节点, 如图 1-2)

  

                             原始节点  图 1-1                                                      左旋后节点  图 1-2

 3.左旋代码实现

\star\star 左旋代码思路:(图解:见图 1-3)

1.先创建一个新节点(newNode),值设为当前根节点的值

2.将新节点的左子树设为当前根节点的左子树 newNode.left = left

3.将新节点的右子树设为当前节点的右子树的左子节点 newNode.right = right.left

4.再将当前节点的替换为右子节点的值 value = right.value

5.将当前节点的右子树变为当前节点右子树的右子树(意思就是将图 1-2 中的 6 置为空)

right = right.right

6.即当前节点的左子树就为新节点 left = newLeft

\bigtriangleup(自己动手画一遍更加清晰)

                                 图 1-3                                                          左旋后节点  图 1-2

 //左旋转
    private void leftRotate() {
        //以当前根节点的值创建新的节点
        Node newNode = new Node(value);
        //将当前节点的左子树变成新节点的左子树
        newNode.left = left;
        //将当前节点的右子树的左子节点变成新节点的右子树
        newNode.right = right.left;
        //将当前节点的值替换成右子树的值
        value = right.value;
        //将当前右子树的右子节点变成当前节点的右子树
        right = right.right;
        //再将当前节点的左子树变成新的节点
        left = newNode;
    }

\star 判断树的高度 :

//返回左子树的高度
    public int leftHeight() {
        if (left == null) {
            return 0;
        }
        return left.height();
    }

    //返回右子树的高度
    public int rightHeight() {
        if (right == null) {
            return 0;
        }
        return right.height();
    }

//返回以该节点为根节点的树的高度
    public int height() {
        return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height() + 1);
    }

二、AVL树的右旋

1. 为什么要进行右旋?

(左子树的高度 - 右子树的高度)> 1 时,该树则不再为一个AVL树

失衡结构(LL型):

A (平衡因子 +2)
 /
B (平衡因子 +1)
 /
C

右旋后

  • 右旋后,B成为新的根节点,A变为B的右子节点,左子树高度降低,平衡因子恢复正常。
B
 / \
C   A

 2.右旋的代码分析:(图解过程与左旋类似)

\star\star 右旋代码思路:

1.创建一个新节点newNode),值为当前根节点的值

2.将新节点的右子树设为当前节点的右子树 newNode.right = right

3.将新节点的左子树设为当前节点的左子树的右子节点 newNode.left = left.right

4.将当前节点的替换为当前节点左子节点的的值 value = left.value

5.将当前节点的左子树设为当前节点的左子树的左子树 left = left.left

6.最后当前节点的右子树设为新节点 right = newLeft

 //右旋转
    private void rightRotate() {
        //将当前根节点为值设为新节点的值
        Node newNode = new Node(value);
        //将新节点的右子树设为当前节点的右子树
        newNode.right = right;
        //将新节点的左子树设为当前左子树的右子节点
        newNode.left = left.right;
        //将当前节点替换为当前节点的左子节点
        value = left.value;
        //将当前节点的左子树设为当前节点的左子树的左子树
        left = left.left;
        //最后将当前节点的右子树设为新节点
        right = newNode;
    }

三、双旋

1. 为什么要进行双旋?

双旋(先左旋再右旋,或先右旋再左旋)用于修复嵌套型失衡(如LR型或RL型),这类失衡无法通过单一旋转解决。

示例(LR型失衡)

原始结构

A (平衡因子 +2)
 /
B (平衡因子 -1)
 \
  C

步骤1:对B左旋

A
 /
C
 /
B

步骤2:对A右旋

C
 / \
B   A

2.双旋代码实现

//当添加一个节点后,若(右子树的高度 - 左子树的高度)> 1,左旋转
        if (rightHeight() - leftHeight() > 1) {
            //如果他的右子树的左子树的高度大于他的右子树的右子树的高度
            if (right != null && right.leftHeight() > right.rightHeight()) {
                //先对右子节点进行右旋
                right.rightRotate();
                //在对当前节点进行左旋
                leftRotate();
            } else {
                leftRotate();
            }
            return;
        }

        if (leftHeight() - rightHeight() > 1) {
            if (left != null && left.rightHeight() > left.leftHeight()) {
                left.leftRotate();
                rightRotate();
            } else {
                rightRotate();
            }
        }

四、完整代码

public class AVLTreeDemo {
    public static void main(String[] args) {
        int[] arr = {4, 3, 6, 5, 7, 8};
        AVLTree avlTree = new AVLTree();
        for (int i = 0; i < arr.length; i++) {
            avlTree.add(new Node(arr[i]));
        }
        System.out.println("中序遍历");
        avlTree.infixOrder();

        System.out.println("在没有处理前");
        System.out.println("树的高度:" + avlTree.getRoot().height());
        System.out.println("树的左子树的高度:" + avlTree.getRoot().leftHeight());
        System.out.println("树的右子树的高度:" + avlTree.getRoot().rightHeight());
        System.out.println("当前根节点=" + avlTree.getRoot());
        System.out.println("根节点的左子节点 + " + avlTree.getRoot().right);
    }
}

class AVLTree {
    private Node root;

    public Node getRoot() {
        return root;
    }

    //创建二叉树
    public void add(Node node) {
        if (root == null) {
            root = node;
        } else {
            root.add(node);
        }
    }

    //删除节点
    public Node search(int value) {
        if (root == null) {//判断根节点是否为空
            return null;
        } else {
            return root.search(value);
        }
    }

    //删除的父节点
    public Node searchParent(int value) {
        if (root == null) {//判断根节点是否为空
            return null;
        } else {
            return root.searchParent(value);
        }
    }

    //删除node为根节点的二叉排序树的最小节点
    public int delRightTreeMin(Node node) {
        Node target = node;
        //循环查找target右子树的左子节点,找到最小值
        while (target.left != null) {
            target = target.left;
        }
        //target指向了最小节点
        delNode(target.value);
        return target.value;
    }

    //删除节点
    public void delNode(int value) {
        if (root == null) {//判断根节点是否为空
            return;
        } else {
            //查找目标节点
            Node targetNode = search(value);
            //如果目标节点为空,则没有找到要删除的节点
            if (targetNode == null) {
                return;
            }
            //表示二叉树中只有一个节点
            if (root.left == null && root.right == null) {
                root = null;
                return;
            }
            //找到目标节点的父节点
            Node parent = searchParent(value);
            if (targetNode.left == null && targetNode.right == null) {
                //判断目标节点是父节点的左子节点还是右子节点
                if (parent.left != null && parent.left.value == value) {//要删除的节点是父节点的左子节点
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {//要删除的节点是父节点的右子节点
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right.value == value) {//删除有两棵树的节点
                //将target节点的右子树的最小节点删除
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;
            } else {//删除只有一颗子树的节点
                //要删除的节点有左子节点
                if (targetNode.left != null) {
                    //如果要删除的节点是 parent 的左子节点
                    if (parent.left.value == value) {
                        parent.left = targetNode.left;
                    } else {//要删除的节点是 parent 的右子节点
                        parent.right = targetNode.left;
                    }
                } else {//要删除的节点有右子节点
                    //如果要删除的节点是 parent 的左子节点
                    if (parent.left.value == value) {
                        parent.left = targetNode.right;
                    } else {//要删除的节点是 parent 的右子节点
                        parent.right = targetNode.right;
                    }
                }
            }
        }
    }

    public void infixOrder() {
        if (root != null) {
            root.infixOrder();
        } else {
            System.out.println("当前二叉树为空~");
        }
    }
}

class Node {
    int value;
    Node left;
    Node right;

    public Node(int value) {
        this.value = value;
    }

    //返回左子树的高度
    public int leftHeight() {
        if (left == null) {
            return 0;
        }
        return left.height();
    }

    //返回右子树的高度
    public int rightHeight() {
        if (right == null) {
            return 0;
        }
        return right.height();
    }

    //返回以该节点为根节点的树的高度
    public int height() {
        return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height() + 1);
    }

    //左旋转
    private void leftRotate() {
        //以当前根节点的值创建新的节点
        Node newNode = new Node(value);
        //将当前节点的左子树变成新节点的左子树
        newNode.left = left;
        //将当前节点的右子树的左子节点变成新节点的右子树
        newNode.right = right.left;
        //将当前节点的值替换成右子树的值
        value = right.value;
        //将当前右子树的右子节点变成当前节点的右子树
        right = right.right;
        //再将当前节点的左子树变成新的节点
        left = newNode;
    }

    //右旋转
    private void rightRotate() {
        //将当前根节点为值设为新节点的值
        Node newNode = new Node(value);
        //将新节点的右子树设为当前节点的右子树
        newNode.right = right;
        //将新节点的左子树设为当前左子树的右子节点
        newNode.left = left.right;
        //将当前节点替换为当前节点的左子节点
        value = left.value;
        //将当前节点的左子树设为当前节点的左子树的左子树
        left = left.left;
        //最后将当前节点的右子树设为新节点
        right = newNode;
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    //添加数据
    public void add(Node node) {
        if (node == null) {
            return;
        }
        if (node.value < this.value) {
            if (this.left == null) {
                this.left = node;
            } else {
                //向左递归添加节点
                this.left.add(node);
            }
        } else {
            if (this.right == null) {
                this.right = node;
            } else {
                //向右递归添加节点
                this.right.add(node);
            }
        }
        //当添加一个节点后,若(右子树的高度 - 左子树的高度)> 1,左旋转
        if (rightHeight() - leftHeight() > 1) {
            //如果他的右子树的左子树的高度大于他的右子树的右子树的高度
            if (right != null && right.leftHeight() > right.rightHeight()) {
                //先对右子节点进行右旋
                right.rightRotate();
                //在对当前节点进行左旋
                leftRotate();
            } else {
                leftRotate();
            }
            return;
        }

        if (leftHeight() - rightHeight() > 1) {
            if (left != null && left.rightHeight() > left.leftHeight()) {
                left.leftRotate();
                rightRotate();
            } else {
                rightRotate();
            }
        }
    }

    //查找当前要删除的节点
    public Node search(int value) {
        if (value == this.value) {//如果当前查找的节点等于要删除的节点就返回
            return this;
        } else if (value < this.value) {//当前查找的节点小于要删除的节点
            if (this.left == null) {//如果左节点等于空就返回,表示没找到
                return null;
            }
            //否则继续递归向左查找
            return this.left.search(value);
        } else {//当前查找的节点大于要删除的节点
            if (this.right == null) {//如果右节点等于空就返回,没找到
                return null;
            }
            //否则继续向右递归查找
            return this.right.search(value);
        }
    }

    //查找要删除节点的父节点
    public Node searchParent(int value) {
        //左节点不为空并且左节点下的子节点就是要删除的节点,右节点同理
        if (this.left != null && this.left.value == value ||
                this.right != null && this.right.value == value) {
            return this;
        } else {
            //左节点不等于空并且要查找的左节点的值小于要删除的值
            if (this.left != null && value < this.value) {
                //向左递归查找
                return this.left.searchParent(value);
            } else if (this.right != null && value > this.value) {//右节点同理
                //向右递归查找
                return this.right.searchParent(value);
            } else {//没有父节点
                return null;
            }
        }
    }

    //中序遍历
    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.infixOrder();
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值