定义和区别
博弈树搜索算法:
定义:
博弈树搜索算法是一类用于探索博弈中所有可能状态和走法的算法。它们通过构建和遍历博弈树来评估每个决策点的潜在结果,目的是在完全或部分信息的博弈中找到最优策略。
特点:
目标:
通过全面或部分搜索可能的状态空间,识别出最优的行动策略。
应用场景:
主要应用于完全信息博弈,如棋类游戏(国际象棋、围棋、中国象棋)。
原理:
通过递归构建博弈树或图,评估不同决策路径的收益,从而选择最优解。
典型算法:
极大极小算法(Minimax Algorithm):递归地遍历博弈树的所有可能状态,以寻找最优决策。它假设对手也会采取最优策略。
α-β剪枝(Alpha-Beta Pruning):在极大极小算法的基础上,通过剪枝技术减少需要评估的节点数,提高搜索效率。
蒙特卡洛树搜索(Monte Carlo Tree Search, MCTS):结合随机模拟和树搜索,适用于状态空间庞大的问题,通过模拟来评估未来的博弈状态。
博弈决策算法:
定义:
博弈决策算法是一类在博弈中用于决策选择的算法,它们基于现有的信息(完全或不完全),通过优化博弈中的策略来找到最优解,目标是使得参与者在博弈中获得最佳收益。这类算法常用于多次博弈或非完全信息博弈的场景,尤其关注如何选择最优策略以应对其他博弈参与者的行为。
特点:
目标:
优化决策过程,通过某种策略选择方法来最大化某个目标(例如收益、胜率)。
应用场景:
常用于多次博弈或非完全信息博弈,如经济、对抗问题、多玩家合作或对抗博弈。
原理:
这些算法通常依赖于决策理论和优化理论,分析和解决具有不确定性、动态变化的博弈问题。
典型算法:
后悔最小化算法(Regret Minimization):通过减少决策过程中的“后悔值”,优化博弈中的长期收益。
Minimax-Q算法:基于Q学习和极大极小原理,针对随机零和博弈找到最优解。
Nash Q-Learning算法:扩展Minimax-Q到一般博弈,找到纳什均衡策略。
区别总结:
焦点:
博弈树搜索算法的核心是对博弈状态空间的探索和评估,通常构建博弈树进行搜索;博弈决策算法的核心是优化策略,基于局部信息或学习找到最优策略。
处理信息的方式:
图搜索算法通常在完全信息或部分信息的博弈中直接进行状态空间的搜索,而决策算法通常在不完全信息、动态、多轮次博弈中,通过分析决策历史或学习进行策略优化。
目标:
树搜索算法侧重寻找单次博弈的最优解,而决策算法更适用于多次重复博弈或不确定博弈环境,目标是长期最优决策。