1.DFS基础知识
深度优先搜索基础知识与原理,请参考此文章
2.排列数字问题
2.1 题目描述
2.2 解题思路
运用DFS解决全排列问题,一条路搜到底
原图链接:AcWing 842. 排列数字--深度优先遍历代码+注释 - AcWing
步骤解释:
- 用 path 数组保存排列,当排列的长度为 n 时,是一种方案,输出。
- 用 flag 数组表示数字是否用过。当 flag[i] 为 1 时:i 已经被用过,flag[i] 为 0 时,i 没有被用过。
- dfs(i) 表示的含义是:在 path[i] 处填写数字,然后递归的在下一个位置填写数字。
- 回溯:第 i 个位置填写某个数字的所有情况都遍历后, 第 i 个位置填写下一个数字。
假设有 3 个空位,从前往后填数字,每次填一个位置,填的数字不能和前面一样。
最开始的时候,三个空位都是空的: __
首先填写第一个空位,第一个空位可以填 1,填写后为:1
填好第一个空位,填第二个空位,第二个空位可以填 2,填写后为:1 2 __
填好第二个空位,填第三个空位,第三个空位可以填 3,填写后为: 1 2 3
这时候,空位填完,无法继续填数,所以这是一种方案,输出。
然后往后退一步,退到了状态:1 2 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 3 ,没有其他数字可以填。
因此再往后退一步,退到了状态:1 。第二个空位上除了填过的 2,还可以填 3。第二个空位上填写 3,填写后为:1 3 __
填好第二个空位,填第三个空位,第三个空位可以填 2,填写后为: 1 3 2
这时候,空位填完,无法继续填数,所以这是一种方案,输出。
然后往后退一步,退到了状态:1 3 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 2,没有其他数字可以填。
因此再往后退一步,退到了状态:1 。第二个空位上除了填过的 2,3,没有其他数字可以填。
因此再往后退一步,退到了状态: 。第一个空位上除了填过的 1,还可以填 2。第一个空位上填写 2,填写后为:2 __
填好第一个空位,填第二个空位,第二个空位可以填 1,填写后为:2 1 __
填好第二个空位,填第三个空位,第三个空位可以填 3,填写后为:2 1 3
这时候,空位填完,无法继续填数,所以这是一种方案,输出。
然后往后退一步,退到了状态:2 1 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 3,没有其他数字可以填。
因此再往后退一步,退到了状态:2 。第二个空位上除了填过的 1,还可以填 3。第二个空位上填写 3,填写后为:2 3 __
填好第二个空位,填第三个空位,第三个空位可以填 1,填写后为:2 3 1
这时候,空位填完,无法继续填数,所以这是一种方案,输出。
然后往后退一步,退到了状态:2 3 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 1,没有其他数字可以填。
因此再往后退一步,退到了状态:2 。第二个空位上除了填过的 1,3,没有其他数字可以填。
因此再往后退一步,退到了状态: 。第一个空位上除了填过的 1,2,还可以填 3。第一个空位上填写 3,填写后为:3 __
填好第一个空位,填第二个空位,第二个空位可以填 1,填写后为:3 1 __
填好第二个空位,填第三个空位,第三个空位可以填 2,填写后为:3 1 2
这时候,空位填完,无法继续填数,所以这是一种方案,输出。
然后往后退一步,退到了状态:3 1 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 2,没有其他数字可以填。
因此再往后退一步,退到了状态:3 。第二个空位上除了填过的 1,还可以填 2。第二个空位上填写 2,填写后为:3 2 __
填好第二个空位,填第三个空位,第三个空位可以填 1,填写后为:3 2 1
这时候,空位填完,无法继续填数,所以这是一种方案,输出。
然后往后退一步,退到了状态:3 2 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 1,2,没有其他数字可以填。
因此再往后退一步,退到了状态:3 。第二个空位上除了填过的 1,2,没有其他数字可以填。
因此再往后退一步,退到了状态: __。第一个空位上除了填过的 1,2,3,没有其他数字可以填。
此时深度优先搜索结束,输出了所有的方案。
2.3 c++代码
#include <iostream>
using namespace std;
const int N = 10;
int n;
int path[N]; // 从0到n-1共n个位置 存放一个排列
bool flag[N]; // 存放每个数字的使用状态 true表示使用了 false表示没使用过
void dfs(int u)
{
if (u == n) // 一个排列填充完成
{
for (int i = 0; i < n; i ++) printf("%d ",path[i]);
puts(""); // 相当于输出一个回车
return;
}
for (int i = 1; i <= n; i ++)
{
if (!flag[i])
{
path[u] = i; // 把 i 填入数字排列的位置上
flag[i] = true; // 表示该数字用过了 不能再用
dfs(u + 1); // 这个位置的数填好 递归到右面一个位置
flag[i] = false; // 恢复现场 该数字后续可用
}
}
// for 循环全部结束了 dfs(u)才全部完成 回溯
}
int main()
{
scanf("%d", &n);
dfs(0); // 在path[0]处开始填数
return 0;
}
2.4 python代码
n=int(input())
path=[0 for _ in range(n)]
flag=[False for _ in range(n+1)]
def dfs(u):
if u==n:
for i in range(n):
print(path[i],end=' ')
print()
return 0
#这一层dfs结束,但上一层的dfs继续运行,退回到上一层,进行回溯
for j in range(1,n+1):
if not flag[j]:
path[u]=j
flag[j]=True #保证下一个数与上一个数不同
dfs(u+1)
flag[j]=False #回溯标记
dfs(0) #第0个位置开始(0索引)
3.N-皇后问题
3.1 题目描述
输入数据:
4
输出数据:
.Q..
...Q
Q...
..Q.
..Q.
Q...
...Q
.Q..
3.2 解题思路
核心思路:
- 函数名:void dfs(int r): 深度优先遍历函数。参数r:从第r行开始放棋子,处理第r行。
- 递归结束判定:见代码,当 r == n的时候,说明应该处理第 n行了,也代表第 0~n-1行放好棋子,也就是整个棋盘放好了棋子,也就是得到了一种解,也就是递归结束。
- 第r行,第i列能不能放棋子:用数组dg udg cor 分别表示:点对应的两个斜线以及列上是否有皇后。
- dg[i + r] 表示 r行i列处,所在的对角线上有没有棋子,udg[n - i + r]表示 r行i列处,所在的反对角线上有没有棋子,cor[i]表示第i列上有没有棋子。如果 r行i列的对角线,反对角线上都没有棋子,即!cor[i] && !dg[i + r] && !udg[n - i + r]为真,则代表 r行i列处可以放棋子。
疑难解释:
对角线 dg[u+i],反对角线udg[n−u+i]中的下标 u+i和 n−u+i 表示的是截距
- 反对角线 y=x+b, 截距 b=y−x,因为我们要把 b 当做数组下标来用,显然 b不能是负的,所以我们加上 +n(实际上+n+4,+2n都行),来保证是结果是正的,即 y - x + n
- 而对角线 y=−x+b, 截距是 b=y+x,这里截距一定是正的,所以不需要加偏移量
原图链接:AcWing 843. n-皇后问题--图解+代码注释 - AcWing
3.3 c++代码
#include <iostream>
using namespace std;
const int N = 11;
char q[N][N];//存储棋盘
bool dg[N * 2], udg[N * 2], cor[N];//点对应的两个斜线以及列上是否有皇后
int n;
void dfs(int r)
{
if(r == n)//放满了棋盘,输出棋盘
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j < n; j++)
cout << q[i][j];
cout << endl;
}
cout << endl;
return;
}
for(int i = 0; i < n; i++)//第 r 行,第 i 列 是否放皇后
{
if(!cor[i] && !dg[i + r] && !udg[n - i + r])//不冲突,放皇后
{
q[r][i] = 'Q';
cor[i] = dg[i + r] = udg[n - i + r] = 1;//对应的 列, 斜线 状态改变
dfs(r + 1); //处理下一行
cor[i] = dg[i + r] = udg[n - i + r] = 0;//恢复现场
q[r][i] = '.';
}
}
}
int main()
{
cin >> n;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < n; j ++ )
q[i][j] = '.';
dfs(0);
return 0;
}
3.4 python代码
n=int(input())
col=[False for _ in range(n)]
dg=[False for _ in range(n*2)] #主对角线列表
udg=[False for _ in range(n*2)] #副对角线列表
p=[['.' for _ in range(n)] for _ in range(n)] #生成棋盘
def dfs(r):
if r==n:
for i in range(n):
for j in range(n):
print(p[i][j],end='')
print()
print()
return
for c in range(n): #一条对角线上的坐标,(x+y)的值是不变的
if not col[c] and not dg[r+c] and not udg[r-c+n]:
p[r][c]='Q'
col[c]=dg[r+c]=udg[r-c+n]=True
dfs(r+1)
col[c]=dg[r+c]=udg[r-c+n]=False
p[r][c]='.'
dfs(0)