AcWing算法 DFS 之排列数字,N-皇后问题(python,c++代码实现)

 1.DFS基础知识

深度优先搜索基础知识与原理,请参考此文章

https://blog.csdn.net/2403_89586338/article/details/146328865?fromshare=blogdetail&sharetype=blogdetail&sharerId=146328865&sharerefer=PC&sharesource=2403_89586338&sharefrom=from_linkhttps://blog.csdn.net/2403_89586338/article/details/146328865?fromshare=blogdetail&sharetype=blogdetail&sharerId=146328865&sharerefer=PC&sharesource=2403_89586338&sharefrom=from_link

2.排列数字问题

2.1 题目描述

 2.2 解题思路

运用DFS解决全排列问题,一条路搜到底

原图链接:AcWing 842. 排列数字--深度优先遍历代码+注释 - AcWing

 步骤解释:

  • 用 path 数组保存排列,当排列的长度为 n 时,是一种方案,输出。
  • 用 flag 数组表示数字是否用过。当 flag[i] 为 1 时:i 已经被用过,flag[i] 为 0 时,i 没有被用过。
  • dfs(i) 表示的含义是:在 path[i] 处填写数字,然后递归的在下一个位置填写数字。
  • 回溯:第 i 个位置填写某个数字的所有情况都遍历后, 第 i 个位置填写下一个数字。

假设有 3 个空位,从前往后填数字,每次填一个位置,填的数字不能和前面一样。

最开始的时候,三个空位都是空的: __

首先填写第一个空位,第一个空位可以填 1,填写后为:1

填好第一个空位,填第二个空位,第二个空位可以填 2,填写后为:1 2 __

填好第二个空位,填第三个空位,第三个空位可以填 3,填写后为: 1 2 3

这时候,空位填完,无法继续填数,所以这是一种方案,输出。

然后往后退一步,退到了状态:1 2 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 3 ,没有其他数字可以填。

因此再往后退一步,退到了状态:1 。第二个空位上除了填过的 2,还可以填 3。第二个空位上填写 3,填写后为:1 3 __

填好第二个空位,填第三个空位,第三个空位可以填 2,填写后为: 1 3 2

这时候,空位填完,无法继续填数,所以这是一种方案,输出。

然后往后退一步,退到了状态:1 3 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 2,没有其他数字可以填。

因此再往后退一步,退到了状态:1 。第二个空位上除了填过的 2,3,没有其他数字可以填。

因此再往后退一步,退到了状态: 。第一个空位上除了填过的 1,还可以填 2。第一个空位上填写 2,填写后为:2 __

填好第一个空位,填第二个空位,第二个空位可以填 1,填写后为:2 1 __

填好第二个空位,填第三个空位,第三个空位可以填 3,填写后为:2 1 3

这时候,空位填完,无法继续填数,所以这是一种方案,输出。

然后往后退一步,退到了状态:2 1 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 3,没有其他数字可以填。

因此再往后退一步,退到了状态:2 。第二个空位上除了填过的 1,还可以填 3。第二个空位上填写 3,填写后为:2 3 __

填好第二个空位,填第三个空位,第三个空位可以填 1,填写后为:2 3 1

这时候,空位填完,无法继续填数,所以这是一种方案,输出。

然后往后退一步,退到了状态:2 3 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 1,没有其他数字可以填。

因此再往后退一步,退到了状态:2 。第二个空位上除了填过的 1,3,没有其他数字可以填。

因此再往后退一步,退到了状态: 。第一个空位上除了填过的 1,2,还可以填 3。第一个空位上填写 3,填写后为:3 __

填好第一个空位,填第二个空位,第二个空位可以填 1,填写后为:3 1 __

填好第二个空位,填第三个空位,第三个空位可以填 2,填写后为:3 1 2

这时候,空位填完,无法继续填数,所以这是一种方案,输出。

然后往后退一步,退到了状态:3 1 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 2,没有其他数字可以填。

因此再往后退一步,退到了状态:3 。第二个空位上除了填过的 1,还可以填 2。第二个空位上填写 2,填写后为:3 2 __

填好第二个空位,填第三个空位,第三个空位可以填 1,填写后为:3 2 1

这时候,空位填完,无法继续填数,所以这是一种方案,输出。

然后往后退一步,退到了状态:3 2 __ 。剩余第三个空位没有填数。第三个空位上除了填过的 1,2,没有其他数字可以填。

因此再往后退一步,退到了状态:3 。第二个空位上除了填过的 1,2,没有其他数字可以填。

因此再往后退一步,退到了状态: __。第一个空位上除了填过的 1,2,3,没有其他数字可以填。

此时深度优先搜索结束,输出了所有的方案。

2.3 c++代码

#include <iostream>

using namespace std;

const int N = 10;

int n;
int path[N];       // 从0到n-1共n个位置 存放一个排列
bool flag[N];     // 存放每个数字的使用状态 true表示使用了 false表示没使用过

void dfs(int u)
{
    if (u == n)    // 一个排列填充完成
    {
        for (int i = 0; i < n; i ++) printf("%d ",path[i]);  
        puts("");  // 相当于输出一个回车
        return;
    }

    for (int i = 1; i <= n; i ++)
    {
        if (!flag[i])
        {
            path[u] = i;       // 把 i 填入数字排列的位置上
            flag[i] = true;   // 表示该数字用过了 不能再用
            dfs(u + 1);        // 这个位置的数填好 递归到右面一个位置
            flag[i] = false;  // 恢复现场 该数字后续可用
        }
    }
    // for 循环全部结束了 dfs(u)才全部完成 回溯
}

int main()
{
    scanf("%d", &n);
    dfs(0);    // 在path[0]处开始填数
    return 0;
}

2.4 python代码

n=int(input())
path=[0 for _ in range(n)]
flag=[False for _ in range(n+1)]
def dfs(u):
    if u==n:
        for i in range(n):
            print(path[i],end=' ')
        print()
        return 0   
        #这一层dfs结束,但上一层的dfs继续运行,退回到上一层,进行回溯
    for j in range(1,n+1):
        if not flag[j]:
            path[u]=j
            flag[j]=True   #保证下一个数与上一个数不同
            dfs(u+1)
            flag[j]=False  #回溯标记
dfs(0)  #第0个位置开始(0索引)
            
    

3.N-皇后问题

3.1 题目描述

输入数据:

4

输出数据:

.Q..
...Q
Q...
..Q.

..Q.
Q...
...Q
.Q..

 3.2 解题思路

核心思路:

  • 函数名:void dfs(int r): 深度优先遍历函数。参数r:从第r行开始放棋子,处理第r行。
  • 递归结束判定:见代码,当 r == n的时候,说明应该处理第 n行了,也代表第 0~n-1行放好棋子,也就是整个棋盘放好了棋子,也就是得到了一种解,也就是递归结束。
  • 第r行,第i列能不能放棋子:用数组dg udg cor 分别表示:点对应的两个斜线以及列上是否有皇后。
  • dg[i + r] 表示 r行i列处,所在的对角线上有没有棋子,udg[n - i + r]表示 r行i列处,所在的反对角线上有没有棋子,cor[i]表示第i列上有没有棋子。如果 r行i列的对角线,反对角线上都没有棋子,即!cor[i] && !dg[i + r] && !udg[n - i + r]为真,则代表 r行i列处可以放棋子。

疑难解释:
对角线 dg[u+i],反对角线udg[n−u+i]中的下标 u+i和 n−u+i 表示的是截距 

  • 反对角线 y=x+b, 截距 b=y−x,因为我们要把 b 当做数组下标来用,显然 b不能是负的,所以我们加上 +n(实际上+n+4,+2n都行),来保证是结果是正的,即 y - x + n
  • 而对角线 y=−x+b, 截距是 b=y+x,这里截距一定是正的,所以不需要加偏移量

原图链接:AcWing 843. n-皇后问题--图解+代码注释 - AcWing

 

3.3 c++代码

#include <iostream>
using namespace std;

const int N = 11;

char q[N][N];//存储棋盘
bool dg[N * 2], udg[N * 2], cor[N];//点对应的两个斜线以及列上是否有皇后
int n;
void dfs(int r)
{
    if(r == n)//放满了棋盘,输出棋盘
    {
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < n; j++)
                cout << q[i][j];
            cout << endl;
        }
        cout << endl;
        return;
    }

    for(int i = 0; i < n; i++)//第 r 行,第 i 列 是否放皇后
    {
        if(!cor[i] && !dg[i + r] && !udg[n - i + r])//不冲突,放皇后
        {
            q[r][i] = 'Q';
            cor[i] = dg[i + r] = udg[n - i + r] = 1;//对应的 列, 斜线 状态改变
            dfs(r + 1);   //处理下一行
            cor[i] = dg[i + r] = udg[n - i + r] = 0;//恢复现场
            q[r][i] = '.';
        }
    }
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n; j ++ )
            q[i][j] = '.';
    dfs(0);
    return 0;
}

3.4 python代码

n=int(input())
col=[False for _ in range(n)]
dg=[False for _ in range(n*2)]  #主对角线列表
udg=[False for _ in range(n*2)] #副对角线列表
p=[['.' for _ in range(n)] for _ in range(n)] #生成棋盘

def dfs(r):
    if r==n:
        for i in range(n):
            for j in range(n):
                print(p[i][j],end='')
            print()
        print()
        return
    for c in range(n): #一条对角线上的坐标,(x+y)的值是不变的
        if not col[c] and not dg[r+c] and not udg[r-c+n]:
            p[r][c]='Q'
            col[c]=dg[r+c]=udg[r-c+n]=True
            dfs(r+1)
            col[c]=dg[r+c]=udg[r-c+n]=False
            p[r][c]='.'
dfs(0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值