基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。从局部加权回归开始,详介绍了基于R语言的空间异质性数据分析方法。

图片

专题一:空间计量学与R语言操作

1.R语言地理文件的操作

2.空间权重矩阵及其设定

3.线性回归回顾:假设

专题二:局部加权回归:非参数与半参数

1.局部加权回归原理

2.带宽与核函数选择

3.半参数的加权回归

图片

图片

图片

专题三:地理加权回归

1.经典地理加权回归

2.半参数地理加权回归

3.多尺度地理加权回归

4.变量选择:地理加权回归中的岭回归与Lasso回归

图片

图片

专题四:高级主题与回归之外

1.主成份分析与判别分析

2.地理加权主成份分析

3.地理加权判别分析

图片

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值