遥感数据与作物生长模型同化及在作物长势监测与估产中的应用

随着科学技术发展和农业应用需求的驱动,数据同化方法将遥感数据与作物生长模型相结合,监测作物长势及预测作物产量,是当前农业信息技术应用研究的重要内容和发展趋势之一。二者结合既能提供宏观监测信息,又可动态反映作物生长发育过程,有利于实现优势互补,提升应用潜力。一:遥感基础理论知识
1.遥感平台(如无人机)与传感器、国内外主要陆地卫星(如Landsat、SPOT、HJ、GF)
2.遥感基本原理、光谱响应函数、遥感数据处理流程

3.遥感在陆地生态系统监测方面的应用

二:作物长势监测与产量估算国内外研究进展
1.国内外研究综述

2.研究实例分析

三:Fortran编程语言
1.软件安装

2.工程文件建立、基本语法操作

四:作物参数遥感反演基本原理
1.遥感反演作物参数类型
生化组分(叶绿素、氮、干物质、叶片水分含量、花青素)
生物物理参数(LAI、LAD、株高、生物量)
生理生态参数(FPAR、ET)
2.作物参数遥感反演模型
2.1经验模型
线性模型
指数模型
对数模型
2.2物理模型
辐射传输模型
几何光学模型
混合模型
计算机模拟模型

3.不同方法对比分析

图片

五:PROSAIL模型
1.输入参数:LAI/LAD/叶绿素/花青素/干物质/类胡萝卜素/水分含量/…
2.输出参数:植被冠层反射率

图片

3.以FORTRAN代码为例上机操作反射率模拟流程
4.模拟叶片反射率与透射率
5.模拟植被冠层400-2500 nm高光谱反射率曲线

6.模拟Landsat OLI、MODIS等遥感传感器多光谱反射率数据

六:参数敏感性分析
6.1 待优化参数选择
6.2 局部敏感性分析
6.3 全局敏感性分析
EFAST敏感性分析方法介绍
SIMLAB软件操作流程

图片

PROSAIL模型参数全局敏感性分析

图片

模型参数在高光谱波段(400-2500nm)处的敏感性

图片

模型参数在Landsat OLI传感器多光谱波段处的敏感性

七:遥感反演过程中的代价函数求解问题
1.代价函数构建
1.1反演方式
1.2反演参数
1.3“病态”问题
1.4先验知识
1.5函数极值问题
2.反演算法介绍
2.1优化技术
2.2查找表

2.3神经网络
2.4模拟退火

3.应用案例分析

图片

八:基于查找表方法+PROSAIL模型的作物参数遥感反演
1.查找表原理
2.查找表实现

3.基于查找表和PROSAIL模型的作物参数遥感反演

九:基于优化算法+PROSAIL模型的作物参数遥感反演
1.代价/目标函数极值求解
2.测试函数极值求解
3.优化算法求解PROSAIL模型参数

4.待求解作物参数最优值提取

十:作物模型程序化表达与运行
1.模型分类
1.1经验模型
1.2半机理模型
1.3机理模型
2.模型选取原则
3.模型调试
4.模型标定
5.模型对比分析
6.应用案例分析
7.模型运行(以DSSAT作物模型为例、FORTRAN源码)
7.1时间序列植被参数(如叶面积指数)演化模拟

7.2作物参数(如LAI)时间序列变化及产量模拟过程

图片

十一:作物模型与遥感数据同化建模原理
1.作物模型与遥感观测耦合的必要性
作物模型优缺点
遥感观测优缺点
耦合必要性
2.耦合方法
驱动法
原理
程序实现过程
应用实例
2.2数据同化方法
发展历程
数据同化算法

图片

图片

2.3方法对比分析
3.作物模型参数敏感性分析
待优化参数选择
局部敏感性分析
全局敏感性分析
4.作物模型与遥感数据同化
同化遥感反演结果(如LAI遥感产品)

同化遥感观测反射率

十二:作物模型与遥感反演值同化建模的程序化实现(第一种方式)

图片

作物模型与遥感反演值同化建模框架
1.Fortrtan操作平台
2.遥感反演结果(如叶面积指数)
3.作物模型
4.变分算法
5.代价函数构建
6.迭代求解
7.输出:作物关键参数时间序列变化、产量估算结果、区域制图

图片

十三:作物模型与遥感反射率同化建模的程序化实现(第二种方式)
作物模型与遥感反射率同化建模框架
1.Fortrtan操作平台
2.遥感观测反射率
3.作物模型
4.植被冠层反射率模型
ROSAIL前向模型反射率模拟
5.耦合模型构建(作物模型+冠层反射率模型)
6.变分算法
7.代价函数构建
迭代求解

输出:作物关键参数时间序列变化、产量估算结果、区域制图

内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战解决方案、模型架构及代码示例,到具体的应用领域、部署应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建训练到性能评的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTMTransformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值