在过去几年,我们一直处于文本转图像生成的黄金时代。自Stable Diffusion最初向开源社区发布以来,随着它被集成到越来越广泛的流程中,以利用这一创新的计算机视觉模型,该技术的能力得到了爆发式增长。从ControlNets到LoRAs,再到高斯溅射和即时风格捕捉,很明显,这种创新的范围还将继续扩大。
本文中,我们将探讨令人兴奋的新项目“Improving Diffusion Models for Authentic Virtual Try-on”,即IDM-VTON。该项目是基于Stable Diffusion的最新、最出色的流程之一,为创意模型创造了一种现实世界的应用:试穿服装。借助这一令人惊叹的流程,现在几乎可以为任何人像穿上任何想象得到的服装。在不久的将来,随着这项不可思议的人工智能推动购物方式的演变,我们有望在各地的零售网站上看到这项技术。
进一步来说,在大致介绍该流程后,我们还想介绍对该流程做出的一项新改进,即在掩膜流程中加入Grounded Segment Anything。
基础要求
- 基础机器学习知识:需要理解计算机视觉概念,如分割和边界框。
- 编程语言:熟悉Python编程以及用于模型实现的PyTorch。
- 依赖项:安装torch、torchvision和segment - anything等库(如果有提供的话)。
- 数据集准备:能够获取用于分割任务的有标记或无标记图像数据集。
- 硬件:具备支持G