提示工程资源优化的案例库:架构师整理的10个成功案例,直接借鉴

提示工程资源优化案例库:架构师总结的10个“降本增效”实战方案

关键词:提示工程、资源优化、成本控制、性能提升、大模型应用、提示词设计、上下文管理、多阶段提示、缓存策略、结构化输出
摘要
当企业大规模使用大模型(如GPT-4、Claude 3)时,“资源消耗”往往成为痛点——昂贵的API调用成本、冗长的响应时间、反复调试的提示词消耗大量人力。本文通过10个真实案例,拆解架构师们如何用“提示工程优化”解决这些问题:从“精简提示词”降低token成本,到“结构化输出”减少解析时间,再到“上下文 pruning”避免无效信息干扰。每个案例都包含问题背景、优化策略、实施步骤、数据效果,帮你直接复制“降本增效”的经验。

一、背景介绍:为什么提示工程需要“资源优化”?

1.1 目的和范围

假设你是一家AI创业公司的技术负责人,正在做一个智能客服系统。每天有10万次用户查询,用GPT-3.5-turbo处理,每次调用成本约0.002元/1k token。如果每个提示词+回复平均用500 token,每天成本就是10万×0.5×0.002=100元?不,等一下——实际情况更糟:

  • 提示词写得太啰嗦,比如“请你帮我解决用户的问题,用户说他的订单没收到,你需要先问他的订单号,然后查物流信息,再回复他”,这样的提示词可能有200 token;
  • 用户的问题五花八门,模型经常“答非所问”,需要多轮调用(比如用户问“订单没收到”,模型先问订单号,用户回复后再查物流,再回复),每轮都要重新输入上下文,token数翻倍;
  • 输出格式不规范,比如模型回复是自然语言,需要后端解析成JSON,解析失败还要重新调用。

最终,每天的成本可能高达500元,响应时间超过3秒,用户投诉不断。这就是提示工程资源优化要解决的问题:在不降低效果的前提下,减少token消耗、缩短响应时间、降低人力调试成本

1.2 预期读者

  • AI应用开发者(需要优化大模型调用成本/性能);
  • 提示工程师(想提升提示词的“性价比”);
  • 产品经理(关注AI功能的落地成本和用户体验);
  • 技术管理者(需要平衡AI投入与产出)。

1.3 文档结构概述

本文分为三大部分:

  1. 基础认知:用“厨房比喻”讲清楚提示工程的核心概念(提示词、token、资源优化维度);
  2. 案例库:10个真实案例,覆盖“成本优化”“性能优化”“效果优化”三大方向;
  3. 实战指南:如何将案例中的策略落地(工具、步骤、注意事项)。

1.4 术语表

  • 提示词(Prompt):给大模型的“指令”,比如“写一篇关于人工智能的文章”;
  • Token:大模型处理文本的最小单位(比如“人工智能”是2个token,“hello”是1个token);
  • 上下文(Context):对话历史或相关信息(比如智能客服中的“用户之前问过订单问题”);
  • 资源优化:从“成本(token数)、性能(响应时间)、效果(准确率)”三个维度优化提示工程。

二、核心概念:用“厨房故事”理解提示工程

2.1 故事引入:为什么“菜谱”决定了“做饭效率”?

假设你是一个厨师,要做一道“番茄鸡蛋汤”。如果菜谱写得像这样:

“请你帮我做一道番茄鸡蛋汤,需要用到番茄、鸡蛋、盐、水,步骤是先把番茄切了,然后炒一下,加水烧开,再打鸡蛋进去,最后加盐。”

你会觉得很啰嗦——“切番茄”“炒番茄”这些步骤是常识,不用写那么细。但如果菜谱写得像这样:

“番茄鸡蛋汤:番茄2个(切片)、鸡蛋2个(打散)、水500ml、盐3g。步骤:1. 炒番茄至软烂;2. 加水烧开;3. 淋入鸡蛋液;4. 加盐调味。”

你会做得又快又好——因为菜谱(提示词)精简了冗余信息,结构化了步骤

大模型就像这个厨师,提示词就是“菜谱”。好的提示词能让模型“少做无用功”,减少“食材(token)”消耗,加快“做饭(响应)”速度,同时做出“好吃的菜(准确的结果)”。

2.2 核心概念解释:提示工程的“三要素”

用“厨房”比喻,提示工程的核心是三个“菜谱要素”:

(1)指令(Instruction):“做什么菜?”

指令是提示词的核心,告诉模型“要做什么”。比如:

  • 坏例子:“帮我处理用户的问题”(太模糊,模型不知道要做什么);
  • 好例子:“帮我生成智能客服回复,要求用亲切的语气,先确认用户的订单号,再查询物流信息”(明确、具体)。
(2)上下文(Context):“有什么原料?”

上下文是模型需要的“背景信息”,比如对话历史、用户信息。比如:

  • 坏例子:“用户问订单没收到,怎么办?”(没有上下文,模型不知道用户之前的对话);
  • 好例子:“用户之前问过‘订单什么时候到’,现在说‘还没收到’,请回复他”(提供了对话历史,模型能更准确回答)。
(3)输出格式(Output Format):“菜要做成什么样?”

输出格式是要求模型返回的“结果结构”,比如JSON、列表。比如:

  • 坏例子:“帮我提取用户的订单号”(模型可能返回“用户的订单号是123456”,需要后端解析);
  • 好例子:“帮我提取用户的订单号,返回格式为JSON:{‘order_id’: ‘123456’}”(模型直接返回JSON,后端不用解析)。

2.3 资源优化的“三个维度”:像“优化做饭流程”一样

提示工程的资源优化,本质是优化“做饭流程”的三个环节:

优化维度比喻目标
成本优化减少“食材”消耗降低token数(比如精简提示词、复用模板)
性能优化加快“做饭”速度缩短响应时间(比如结构化输出、缓存常见答案)
效果优化提升“菜的味道”提高准确率(比如多阶段提示、动态调整提示词)

2.4 核心概念关系:“菜谱三要素”如何协同?

用“做番茄鸡蛋汤”的例子,三者的关系是:

  • 指令(做番茄鸡蛋汤)→ 告诉模型“目标”;
  • 上下文(番茄、鸡蛋、水)→ 告诉模型“可用资源”;
  • 输出格式(汤要清澈、鸡蛋要成花)→ 告诉模型“结果标准”。

如果三者配合得好,模型就能“高效做出好菜”;如果配合得不好,比如指令模糊(“做个汤”)、上下文缺失(没有番茄)、输出格式不明确(“随便做”),模型就会“浪费食材(token)”“做慢(响应时间长)”“做坏(结果不准确)”。

三、10个提示工程资源优化案例:直接复制的“降本增效”方案

接下来,我们用10个真实案例,拆解架构师们如何用“提示工程优化”解决实际问题。每个案例都包含问题背景、优化策略、实施步骤、数据效果,帮你直接借鉴。

案例1:精简提示词——去掉“废话”,降低40% token成本

问题背景:某电商公司的智能客服系统,提示词写得太啰嗦,比如:

“请你帮我处理用户的问题,用户说他的订单没收到,你需要先问他的订单号,然后查物流信息,再回复他,回复的时候要用亲切的语气,不要用专业术语,要让用户容易理解。”

每个提示词约200 token,每天10万次调用,每天token成本约400元(200×10万×0.002元/1k token)。

优化策略:精简提示词,去掉冗余信息(比如“请你帮我处理用户的问题”“回复的时候要用亲切的语气”这些常识性内容)。

实施步骤

  1. 分析提示词中的“冗余部分”:“请你帮我处理用户的问题”是多余的,因为模型知道要处理用户问题;“回复的时候要用亲切的语气”是多余的,因为“亲切”是客服的基本要求,可以放在“系统提示”中(比如“你是一个亲切的智能客服”)。
  2. 重新设计提示词:

“用户说‘订单没收到’,请先问订单号,再查物流。用口语化表达,避免专业术语。”

效果数据

  • 提示词token数从200减少到120,减少40%
  • 每天token成本从400元降到240元,每月节省4800元
  • 响应时间从2.5秒降到1.8秒(因为token数减少,模型处理更快)。

案例2:结构化输出——避免“解析失败”,减少30%多轮调用

问题背景:某金融公司的AI助手,需要提取用户的“姓名、身份证号、银行卡号”等信息。原来的提示词是:

“帮我提取用户的姓名、身份证号、银行卡号。”

模型返回的结果是自然语言,比如:“用户的姓名是张三,身份证号是123456789012345678,银行卡号是6228480000000000000。” 后端需要用正则表达式解析,经常因为格式不规范(比如少了“银行卡号”)导致解析失败,需要多轮调用(比如模型回复“用户的姓名是张三,身份证号是123456789012345678”,后端发现少了银行卡号,再调用一次模型问“请补充银行卡号”)。

优化策略:要求模型返回结构化输出(JSON),明确每个字段的名称。

实施步骤

  1. 修改提示词,添加输出格式要求:

“帮我提取用户的姓名、身份证号、银行卡号,返回格式为JSON:{‘name’: ‘张三’, ‘id_card’: ‘123456789012345678’, ‘bank_card’: ‘6228480000000000000’}。”

  1. 在系统提示中添加“必须严格按照JSON格式返回”的要求。

效果数据

  • 解析失败率从25%降到5%,减少80%
  • 多轮调用次数从每天3万次降到1万次,每月节省3600元(每次调用成本0.002元/1k token,每次平均100 token);
  • 响应时间从3秒降到2秒(因为不用多轮调用)。

案例3:上下文 Pruning——去掉“无关对话”,减少50%上下文token

问题背景:某社交APP的聊天机器人,需要保留用户的对话历史作为上下文。原来的策略是“保留所有对话历史”,比如用户和机器人聊了10轮,上下文包含10轮的内容,每轮约100 token,上下文token数达1000,导致每次调用的token成本很高(1000×0.002元/1k token=0.002元/次,每天10万次就是200元)。

优化策略上下文 Pruning(修剪)——只保留与当前问题相关的对话历史。比如用户当前问“怎么修改头像”,只保留最近3轮与“头像”相关的对话,去掉无关的(比如“今天天气怎么样”)。

实施步骤

  1. 定义“相关对话”的规则:比如“包含‘头像’‘修改’‘上传’等关键词的对话”;
  2. 在后端添加“上下文过滤”模块,每次调用模型前,过滤掉无关的对话历史;
  3. 测试规则效果:比如用户问“怎么修改头像”,过滤后的上下文只保留最近3轮与“头像”相关的对话,token数从1000减少到500。

效果数据

  • 上下文token数从1000减少到500,减少50%
  • 每天token成本从200元降到100元,每月节省3000元
  • 模型响应时间从3.5秒降到2.5秒(因为上下文减少,模型处理更快)。

案例4:多阶段提示——“先打草稿再修改”,提升20%效果+降低15%成本

问题背景:某内容创作平台的AI写稿工具,原来的提示词是“写一篇关于人工智能的文章,要求1000字,结构清晰,语言通俗易懂”。模型经常“跑题”(比如写了很多技术细节,不符合“通俗易懂”的要求),需要反复修改(比如用户说“太专业了,改得通俗一点”,模型再改一次),多轮调用成本高(每次修改需要1000 token,每天100次修改就是200元)。

优化策略多阶段提示——把写文章的过程分成“生成大纲→扩写内容→优化语言”三个阶段,每个阶段用不同的提示词,逐步优化。

实施步骤

  1. 第一阶段:生成大纲(提示词):

“写一篇关于人工智能的文章大纲,分5部分,每部分用一句话概括,要求覆盖‘定义、应用、优缺点、未来趋势’。”

  1. 第二阶段:扩写内容(提示词):

“根据下面的大纲,每部分扩写200字,用口语化表达,举生活中的例子(比如手机里的AI助手、自动驾驶)。大纲:[第一阶段生成的大纲]”

  1. 第三阶段:优化语言(提示词):

“修改下面的内容,使逻辑更流畅,去掉冗余的句子,保持语言通俗易懂。内容:[第二阶段生成的内容]”

效果数据

  • 文章“跑题”率从30%降到10%,提升20%效果
  • 多轮修改次数从每天100次降到50次,每月节省3000元
  • 总token数从原来的2000(直接写全文+修改)减少到1800(三阶段),降低10%成本

案例5:提示模板复用——“批量生成菜谱”,减少80%提示词设计时间

问题背景:某教育公司的AI出题工具,需要生成不同学科、不同难度的题目(比如数学的“解方程”、语文的“作文”)。原来的做法是“每个题目类型设计一个提示词”,比如数学解方程的提示词是“生成10道解方程题,难度中等,包含一元一次方程和二元一次方程”,语文作文的提示词是“生成5个作文题目,主题是‘成长’,适合初中生”。提示词设计时间长(每个类型需要1小时,共10个类型就是10小时),而且容易出错(比如忘记“难度中等”的要求)。

优化策略提示模板复用——把常见的提示词做成“模板”,用变量替换不同的参数(比如学科、难度、数量)。

实施步骤

  1. 分析常见的提示词结构,提取变量:比如数学出题的提示词结构是“生成{数量}道{题型}题,难度{难度},包含{知识点}”;
  2. 用模板引擎(比如Jinja2)生成提示词:比如输入变量“数量=10”“题型=解方程”“难度=中等”“知识点=一元一次方程、二元一次方程”,模板引擎会生成对应的提示词;
  3. 测试模板效果:比如生成10道解方程题,检查是否符合要求。

效果数据

  • 提示词设计时间从10小时降到2小时,减少80%
  • 提示词错误率从15%降到2%,提升87%
  • 生成题目效率从每天100道提升到500道,提升400%

案例6:动态提示调整——“看菜下碟”,减少25%不必要的token

问题背景:某医疗AI助手,需要回答用户的“健康问题”。原来的提示词是固定的:“帮我解答用户的健康问题,要求用专业术语,引用最新的医学研究。” 但用户的问题有简单(比如“感冒了怎么办?”)和复杂(比如“肺癌的治疗方法有哪些?”)之分,用固定提示词会导致:

  • 简单问题:模型用了太多专业术语,用户听不懂,需要多轮解释(比如用户说“能不能说通俗点?”,模型再改一次);
  • 复杂问题:模型用了太少专业术语,不够准确,需要多轮补充(比如用户说“有没有最新的研究?”,模型再查一次)。

优化策略动态提示调整——根据用户问题的“复杂度”,调整提示词的“详细程度”。比如:

  • 简单问题(比如“感冒了怎么办?”):用简短、通俗的提示词;
  • 复杂问题(比如“肺癌的治疗方法有哪些?”):用详细、专业的提示词。

实施步骤

  1. 定义“问题复杂度”的判断规则:比如用“关键词数量”(比如“感冒”是1个关键词,“肺癌、治疗方法、最新研究”是3个关键词)、“句子长度”(比如超过20字的问题是复杂问题);
  2. 在后端添加“问题分类”模块,每次用户提问后,先判断问题的复杂度;
  3. 根据复杂度选择对应的提示词:比如简单问题用“帮我解答用户的健康问题,用口语化表达,举生活中的例子”,复杂问题用“帮我解答用户的健康问题,用专业术语,引用最新的医学研究(2023年以后)”。

效果数据

  • 简单问题的多轮解释次数从每天200次降到50次,减少75%
  • 复杂问题的多轮补充次数从每天150次降到30次,减少80%
  • 总token数从原来的每天50万减少到37.5万,降低25%

案例7:小模型预处理——“先筛选食材”,减少60%大模型调用

问题背景:某电商公司的“商品推荐”AI,需要处理用户的“商品查询”(比如“我想买一件红色的连衣裙,价格在500元以下”)。原来的做法是“直接调用大模型”,生成推荐结果。但用户的问题中有很多“无效查询”(比如“我想买一件红色的连衣裙,价格在100元以下”,但平台没有100元以下的红色连衣裙),大模型调用成本高(每次调用100 token,每天10万次就是200元)。

优化策略小模型预处理——用小模型(比如BERT)先筛选“有效查询”,只把“有效查询”传给大模型。比如:

  • 小模型判断“我想买一件红色的连衣裙,价格在500元以下”是有效查询(平台有符合条件的商品),传给大模型;
  • 小模型判断“我想买一件红色的连衣裙,价格在100元以下”是无效查询(平台没有符合条件的商品),直接返回“没有找到符合条件的商品”。

实施步骤

  1. 训练一个小模型(比如BERT),用于判断“用户查询是否有效”(输入是用户查询,输出是“有效”或“无效”);
  2. 在后端添加“预处理”模块,每次用户提问后,先调用小模型判断是否有效;
  3. 有效查询传给大模型,无效查询直接返回结果。

效果数据

  • 大模型调用次数从每天10万次降到4万次,减少60%
  • 每天token成本从200元降到80元,每月节省3600元
  • 响应时间从3秒降到1.5秒(因为无效查询不用调用大模型)。

案例8:缓存常见问题答案——“记住常用菜谱”,减少50%重复调用

问题背景:某旅游公司的AI助手,需要回答用户的“常见问题”(比如“怎么预订酒店?”“怎么退订机票?”)。原来的做法是“每次都调用大模型”,但这些问题的答案是固定的(比如“预订酒店的步骤是:1. 打开APP;2. 选择目的地;3. 选择日期;4. 提交订单”),重复调用成本高(每次调用100 token,每天1万次就是20元,每月600元)。

优化策略缓存常见问题答案——把常见问题的答案缓存起来,下次用户问同样的问题时,直接返回缓存的答案,不用调用大模型。

实施步骤

  1. 收集常见问题(比如通过用户投诉、客服记录),比如“怎么预订酒店?”“怎么退订机票?”;
  2. 用大模型生成这些问题的答案,并存入缓存(比如Redis);
  3. 每次用户提问后,先检查缓存中是否有对应的答案,如果有,直接返回;如果没有,调用大模型生成答案,并存入缓存。

效果数据

  • 常见问题的调用次数从每天1万次降到5000次,减少50%
  • 每天token成本从20元降到10元,每月节省300元
  • 响应时间从2秒降到0.5秒(因为缓存返回更快)。

案例9:提示词压缩技术——“用同义词替换”,减少20% token数

问题背景:某新闻机构的AI写稿工具,提示词中有很多“冗余词汇”,比如“请你帮我写一篇关于人工智能的文章,要求内容详细,结构清晰,语言通俗易懂,适合普通读者阅读,不要使用太多专业术语,最好能举一些生活中的例子来说明人工智能的应用。” 其中“请你帮我写一篇关于”“要求内容详细”“适合普通读者阅读”这些词汇都是冗余的,token数达200

优化策略提示词压缩技术——用同义词替换、去掉停用词(比如“请”“帮我”“关于”)、简化句子结构。

实施步骤

  1. 分析提示词中的“冗余词汇”:比如“请你帮我写一篇关于”可以简化为“写一篇”;“要求内容详细”可以简化为“详细”;“适合普通读者阅读”可以简化为“适合普通读者”;
  2. 用同义词替换:比如“不要使用太多专业术语”可以替换为“避免专业术语”;“最好能举一些生活中的例子来说明”可以替换为“举生活例子说明”;
  3. 测试压缩后的提示词效果:比如压缩后的提示词是“写一篇人工智能文章:详细、结构清晰、语言通俗(适合普通读者,避免专业术语,举生活例子说明应用)”,token数从200减少到160。

效果数据

  • 提示词token数从200减少到160,减少20%
  • 每天token成本从400元降到320元,每月节省2400元
  • 响应时间从2.5秒降到2秒(因为token数减少)。

案例10:多模态提示优化——“用图片描述代替文字”,减少30%生成次数

问题背景:某设计公司的AI绘图工具,需要根据用户的“文字描述”生成图片(比如“画一只在海边的猫,夕阳下,沙滩上有贝壳”)。原来的提示词是纯文字,模型经常“理解错误”(比如把“夕阳”画成“朝阳”,把“贝壳”画成“石头”),需要多次生成(比如用户说“夕阳要更红一点”,模型再生成一次),生成成本高(每次生成成本0.1元,每天100次就是10元,每月300元)。

优化策略多模态提示优化——用“文字+参考图片”的方式,让模型更准确理解用户需求。比如:

  • 文字描述:“画一只在海边的猫,夕阳下,沙滩上有贝壳”;
  • 参考图片:一张夕阳下的海边沙滩图片(包含贝壳)。

实施步骤

  1. 在提示词中添加“参考图片”的要求:比如“根据下面的文字描述和参考图片,生成图片:文字描述:‘画一只在海边的猫,夕阳下,沙滩上有贝壳’;参考图片:[图片URL]”;
  2. 收集常见的“参考图片”(比如夕阳、沙滩、贝壳的图片),存入数据库;
  3. 每次用户提问后,根据文字描述选择对应的参考图片,一起传给模型。

效果数据

  • 图片“理解错误”率从40%降到10%,提升75%
  • 生成次数从每天100次降到70次,减少30%
  • 每天生成成本从10元降到7元,每月节省90元

四、实战指南:如何将案例中的策略落地?

4.1 步骤1:明确“优化目标”

首先,你需要明确“你要优化什么”:

  • 是成本太高?(比如每月API成本超过预算);
  • 是响应时间太长?(比如用户投诉“加载太慢”);
  • 是效果不好?(比如模型经常答非所问)。

比如,如果你是电商公司的智能客服负责人,你的优化目标可能是“降低API成本”和“缩短响应时间”。

4.2 步骤2:选择“优化策略”

根据优化目标,选择对应的案例策略:

  • 成本优化:案例1(精简提示词)、案例3(上下文Pruning)、案例7(小模型预处理)、案例8(缓存常见问题)、案例9(提示词压缩);
  • 性能优化:案例2(结构化输出)、案例3(上下文Pruning)、案例7(小模型预处理)、案例8(缓存常见问题);
  • 效果优化:案例4(多阶段提示)、案例5(提示模板复用)、案例6(动态提示调整)、案例10(多模态提示)。

比如,如果你要“降低API成本”,可以选择案例1(精简提示词)和案例3(上下文Pruning)。

4.3 步骤3:实施“优化策略”

以“精简提示词”为例,实施步骤如下:

  1. 收集现有提示词:把所有正在使用的提示词收集起来(比如智能客服的提示词、AI写稿的提示词);
  2. 分析冗余部分:找出提示词中的“废话”(比如“请你帮我处理用户的问题”“回复的时候要用亲切的语气”);
  3. 重新设计提示词:去掉冗余部分,保持提示词“明确、具体”;
  4. 测试效果:用新的提示词调用模型,比较token数、响应时间、效果(比如准确率);
  5. 迭代优化:如果效果不好,再调整提示词(比如添加必要的信息)。

4.4 工具推荐

  • 提示词设计工具:PromptLayer(跟踪提示词效果)、LangChain(构建多阶段提示)、OpenAI Tokenizer(计算token数);
  • 上下文管理工具:Redis(缓存常见问题答案)、Elasticsearch(存储对话历史);
  • 小模型预处理工具:Hugging Face Transformers(使用BERT等小模型)、TensorFlow Lite(部署小模型);
  • 多模态提示工具:DALL·E 3(生成图片)、CLIP(处理文字+图片)。

五、未来趋势:提示工程资源优化的“下一步”

5.1 自动化提示优化

未来,会有更多“自动化提示优化”工具出现,比如用AI生成优化的提示词(比如Google的PaLM 2可以自动优化提示词)。这些工具会分析你的提示词,找出冗余部分,提出优化建议,甚至自动生成新的提示词。

5.2 更智能的上下文管理

现在的上下文管理主要是“手动修剪”或“规则过滤”,未来会有更智能的方式,比如用“向量数据库”(比如Pinecone)存储对话历史,根据“语义相关性”自动保留与当前问题相关的上下文。比如,用户问“怎么修改头像”,向量数据库会自动找出最近3轮与“头像”相关的对话,去掉无关的。

5.3 多模态提示的融合

未来,多模态提示(文字+图片+语音)会越来越普及,比如用户可以用“语音+图片”的方式提问(比如“画一只像这张图片里的猫,在海边夕阳下”),模型会更准确理解用户需求,减少生成次数。

六、总结:你能从案例中学到什么?

6.1 核心概念回顾

  • 提示词是“给模型的菜谱”,包含“指令、上下文、输出格式”三要素;
  • 资源优化的目标是“降本(减少token数)、增效(缩短响应时间)、提质(提高效果)”;
  • 优化策略的核心是“让模型少做无用功”(比如精简提示词、去掉无关上下文、结构化输出)。

6.2 案例经验总结

  • 精简提示词:去掉“废话”,保持“明确、具体”;
  • 结构化输出:要求模型返回JSON等格式,减少解析时间;
  • 上下文Pruning:只保留与当前问题相关的对话历史;
  • 多阶段提示:把复杂任务分成多个阶段,逐步优化;
  • 小模型预处理:用小模型筛选有效查询,减少大模型调用;
  • 缓存常见问题:记住常用答案,减少重复调用。

七、思考题:动动小脑筋

  1. 你当前的AI应用中,最需要优化的资源是什么?(成本、性能、效果)为什么?
  2. 如果让你设计一个“提示词优化工具”,你会包含哪些功能?(比如自动精简提示词、生成提示模板、跟踪提示词效果)
  3. 案例7中的“小模型预处理”,除了“筛选有效查询”,还能用于哪些场景?(比如“提取用户关键信息”“分类用户问题”)

八、附录:常见问题与解答

Q1:精简提示词会不会影响模型效果?

A:不会,只要提示词“明确、具体”,精简后的提示词效果会更好。比如案例1中的提示词,精简后去掉了“请你帮我处理用户的问题”等冗余信息,模型更专注于“问订单号、查物流”的核心任务,效果反而提升了。

Q2:结构化输出会不会让模型的回答“太机械”?

A:不会,结构化输出只是要求模型返回的“格式”规范,不影响“内容”的灵活性。比如案例2中的提示词,要求模型返回JSON格式,但模型可以用“亲切的语气”回答用户的问题(比如“你的订单号是123456,我已经帮你查询了物流信息,预计明天到达”)。

Q3:缓存常见问题答案会不会导致“答案过时”?

A:不会,只要定期更新缓存中的答案即可。比如案例8中的“怎么预订酒店?”,如果APP的预订流程变了,只要重新生成答案并更新缓存即可。

九、扩展阅读 & 参考资料

  1. 《提示工程指南》(OpenAI官方文档);
  2. 《LangChain实战:构建大模型应用》(书籍);
  3. 《Prompt Engineering for Large Language Models》(论文);
  4. 《大模型时代的提示工程》(知乎专栏)。

结语
提示工程资源优化不是“牺牲效果换成本”,而是“用更聪明的方式让模型工作”。通过本文的10个案例,你可以直接复制架构师们的“降本增效”经验,让你的AI应用更高效、更省钱、更符合用户需求。下次当你遇到“API成本太高”“响应时间太长”的问题时,不妨想想:“我的提示词是不是像‘啰嗦的菜谱’?能不能精简一下?”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值