Spark在碳交易批量决策中的应用:架构师的性能优化

Spark在碳交易批量决策中的应用:架构师的性能优化

一、引入与连接:碳交易的“数据攻坚战”

1.1 一个真实的业务痛点

某大型制造企业的碳交易专员最近陷入了焦虑:每月末需要处理10TB+的排放数据(来自200+个工厂的传感器、ERP系统、第三方核查报告),计算每个工厂的碳配额、预测下月碳价走势,并制定批量交易策略。原来的Hadoop MapReduce方案需要8小时才能完成全流程,而管理层要求将时间压缩到2小时内——因为碳价波动剧烈,延迟的决策可能导致数百万的经济损失。

1.2 为什么是Spark?

碳交易批量决策的核心需求是高效处理大规模迭代型数据

  • 配额计算:需要多次关联排放数据、配额标准、企业类型等表(迭代join);
  • 因子更新:排放因子(如单位产品碳排放)需要按行业、地区动态调整(迭代计算);
  • 策略生成:用历史交易数据训练机器学习模型(迭代训练)。

Hadoop MapReduce的“磁盘-计算”模式无法应对这种高频迭代,而Spark的内存计算(In-Memory Computing)、DAG调度(Directed

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值