Spark在碳交易批量决策中的应用:架构师的性能优化
一、引入与连接:碳交易的“数据攻坚战”
1.1 一个真实的业务痛点
某大型制造企业的碳交易专员最近陷入了焦虑:每月末需要处理10TB+的排放数据(来自200+个工厂的传感器、ERP系统、第三方核查报告),计算每个工厂的碳配额、预测下月碳价走势,并制定批量交易策略。原来的Hadoop MapReduce方案需要8小时才能完成全流程,而管理层要求将时间压缩到2小时内——因为碳价波动剧烈,延迟的决策可能导致数百万的经济损失。
1.2 为什么是Spark?
碳交易批量决策的核心需求是高效处理大规模迭代型数据:
- 配额计算:需要多次关联排放数据、配额标准、企业类型等表(迭代join);
- 因子更新:排放因子(如单位产品碳排放)需要按行业、地区动态调整(迭代计算);
- 策略生成:用历史交易数据训练机器学习模型(迭代训练)。
Hadoop MapReduce的“磁盘-计算”模式无法应对这种高频迭代,而Spark的内存计算(In-Memory Computing)、DAG调度(Directed