在自然语言处理(NLP)的广阔天地中,词袋模型(Bag of Words, BoW) 宛如一块历经岁月沉淀的基石。它虽非当今最耀眼的明星,却为整个领域奠定了至关重要的基础,深刻影响了我们让计算机“理解”文本的方式。本文将深入探讨词袋模型的原理、实现、应用、局限及其在现代NLP中的深远影响。
一、文本理解的困境与向量化曙光
计算机擅长处理结构化的数字和符号,但人类语言却是非结构化、高度灵活且充满歧义的。如何将一段文字(如“这部电影精彩绝伦,演员表演令人叹服!”)转化为计算机能够处理、分析的形式,是NLP面临的首要挑战。
核心需求在于表示(Representation):我们需要一种方法,将文本从字符序列转化为一种数学对象(通常是向量或矩阵),从而能够应用各种机器学习算法进行分类、聚类、检索等任务。
词袋模型应运而生,它提供了一种简单、直观且极其有效的文本向量化方法,其核心思想在于:
-
忽略顺序: 暂时抛弃词语在句子中出现的先后顺序。
-
忽略语法: 暂时不考虑词语之间的句法关系(如主谓宾)