NLP学习路线图(十四):词袋模型(Bag of Words)

在自然语言处理(NLP)的广阔天地中,词袋模型(Bag of Words, BoW) 宛如一块历经岁月沉淀的基石。它虽非当今最耀眼的明星,却为整个领域奠定了至关重要的基础,深刻影响了我们让计算机“理解”文本的方式。本文将深入探讨词袋模型的原理、实现、应用、局限及其在现代NLP中的深远影响。 

一、文本理解的困境与向量化曙光

计算机擅长处理结构化的数字和符号,但人类语言却是非结构化、高度灵活且充满歧义的。如何将一段文字(如“这部电影精彩绝伦,演员表演令人叹服!”)转化为计算机能够处理、分析的形式,是NLP面临的首要挑战。

核心需求在于表示(Representation):我们需要一种方法,将文本从字符序列转化为一种数学对象(通常是向量或矩阵),从而能够应用各种机器学习算法进行分类、聚类、检索等任务。

词袋模型应运而生,它提供了一种简单、直观且极其有效的文本向量化方法,其核心思想在于:

  1. 忽略顺序: 暂时抛弃词语在句子中出现的先后顺序。

  2. 忽略语法: 暂时不考虑词语之间的句法关系(如主谓宾)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摸鱼许可证

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值