在浩瀚的文本海洋中航行,人类大脑天然具备发现主题的能力——翻阅几份报纸,我们迅速辨别出"政治"、"体育"、"科技"等板块;浏览社交媒体,我们下意识区分出美食分享、旅行见闻或科技测评。但机器如何理解文本背后隐藏的主题结构? 这正是主题模型要解决的核心问题。在深度学习浪潮席卷NLP之前,潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)作为主题模型的代表,为我们打开了无监督探索文本语义结构的窗口。
想象《红楼梦》中黛玉的一句"早知他来,我就不来了"。在"情感分析"主题下,这句话透露出幽怨;在"社交礼仪"主题下,它可能只是客套;而在"家族关系"主题下,又隐含贾府复杂的人际网络。LDA的核心能力,正是揭示这种一词多义背后的主题分布。
一、主题模型:文本挖掘的基石
1.1 从词袋到主题
传统文本表示如词袋模型(Bag-of-Words, BoW)和TF-IDF虽能转换文本为向量,却面临两大困境:
-
高维稀疏性:万级词汇表导致特征空间巨大,单个文档仅激活少量维度
-
语义鸿沟:无法捕捉"手机"与"智能手机"的关联,或"苹果"的水果与品牌歧义