UNet改进(4):交叉注意力(Cross Attention)-多模态/多特征交互

在计算机视觉领域,UNet因其优异的性能在图像分割任务中广受欢迎。本文将介绍一种改进的UNet架构——UNetWithCrossAttention,它通过引入交叉注意力机制来增强模型的特征融合能力。

1. 交叉注意力机制

交叉注意力(Cross Attention)是一种让模型能够动态地从辅助特征中提取相关信息来增强主特征的机制。在我们的实现中,CrossAttention类实现了这一功能:

class CrossAttention(nn.Module):
    def __init__(self, channels):
        super(CrossAttention, self).__init__()
        self.query_conv = nn.Conv2d(channels, channels // 8, kernel_size=1)
        self.key_conv = nn.Conv2d(channels, channels // 8, kernel_size=1)
        self.value_conv = nn.Conv2d(channels, channels, kernel_size=1)
        self.gamma = nn.Parameter(torch.zeros(1))
        
    def forward(self, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摸鱼许可证

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值