UNet改进(30):SageAttention在UNet中的4-Bit量化实现详解

1. 注意力机制与量化技术概述

1.1 注意力机制的发展

注意力机制源于人类视觉系统的启发,它允许模型在处理信息时"聚焦"于最重要的部分。从早期的SE(Squeeze-and-Excitation)模块到后来的Self-Attention,注意力机制在各种计算机视觉任务中展现出了卓越的性能提升能力。

传统注意力机制通常通过以下步骤实现:

  1. 特征压缩:通过全局平均池化获取通道级统计信息

  2. 特征激励:使用全连接层学习通道间关系

  3. 权重应用:将学习到的注意力权重应用于原始特征图

1.2 量化技术的必要性

量化技术通过降低神经网络中权重和激活值的数值精度来减少模型大小和计算开销。在边缘设备和移动应用中,量化已成为模型部署的标准技术之一。

常见的量化位宽包括:

  • 32-bit浮点(FP32):标准训练精度

  • 16-bit浮点(FP16):混合精度训练

  • 8-bit整数(INT8):常见推理精度

  • 4-bit整数(INT4):极限压缩方案

  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摸鱼许可证

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值