摸鱼许可证
不想躺平的牛马,不是好牛马。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
UNet改进(36):融合FSATFusion的医学图像分割
本文提出FS-UNet模型,在经典U-Net架构中融合频率和空间注意力机制(FSATFusion)以提升医学图像分割性能。该模型通过频率注意力捕获全局上下文信息,空间注意力聚焦显著区域,采用乘法融合策略实现互补优势。实验表明,FS-UNet在ISIC-2018和CVC-ClinicDB数据集上Dice系数达0.872,优于标准U-Net等基线模型。文章详细介绍了模块设计、实现代码、训练方法和消融实验,证实双重注意力机制能有效平衡局部细节与全局语义信息。研究为医学图像分析提供了性能优越且实用的解决方案。原创 2025-08-30 12:36:49 · 25 阅读 · 0 评论 -
UNet改进(35):基于WGAM模块的PyTorch实战
本文提出了一种基于小波引导注意力机制(WGAM)的改进U-Net模型,用于提升图像分割性能。WGAM模块创新性地结合了小波变换的多尺度分析能力和注意力机制的特征选择能力,通过通道注意力和空间注意力分支增强关键特征。模型在U-Net架构中嵌入WGAM模块,实现了端到端的训练。实验结果显示该方法在医学图像分割任务中显著提升了IoU和Dice系数等指标,同时保持了较低的计算开销。文章详细介绍了WGAM模块的设计原理、代码实现以及训练策略,并提供了完整的网络架构和评估方法,为相关研究提供了可复现的基准方案。原创 2025-08-26 19:05:26 · 31 阅读 · 0 评论 -
UNet改进(34):ACmix-UNet混合架构的PyTorch
本文提出了一种改进的UNet架构——UNet+ACmix,通过融合卷积和自注意力机制提升图像分割性能。ACmix模块采用共享特征降维、分支处理和动态融合策略,结合卷积的局部特征提取能力与自注意力的全局建模优势。实验表明,在略微增加参数量的情况下,该方法在多个数据集上mIoU指标提升1.9%。文章详细介绍了ACmix模块结构、UNet嵌入方式、训练调优策略(如混合精度训练)及实验结果,为图像分割任务提供了一种有效的新型架构方案。原创 2025-08-23 13:49:23 · 213 阅读 · 0 评论 -
UNet改进(33):基于CBAM原理与PyTorch实战指南
本文提出了一种基于CBAM注意力机制的改进UNet网络(UNet_CBAM),用于提升图像分割性能。CBAM模块包含通道和空间双重注意力机制,能自适应聚焦关键特征区域。网络采用编码器-解码器结构,在下采样和上采样过程中均嵌入CBAM模块,通过跳跃连接保留多尺度特征。实验表明,相比基础UNet,该模型在医学图像分割任务中能提升2-5%的Dice系数,收敛更快且抗干扰性更强。文章详细解析了模块实现、网络架构、训练建议,并提供了完整的PyTorch代码实现。原创 2025-08-20 22:16:57 · 58 阅读 · 0 评论 -
UNet改进(32):结合CNN局部建模与Transformer全局感知
UNet_GlobalLocal提出了一种结合全局与局部特征的医学图像分割网络。其核心创新在于GlobalLocalBlock模块,通过深度可分离卷积提取局部特征,同时利用类Transformer机制获取全局上下文,最后融合两种特征。该架构在UNet基础上改进:编码器-解码器各层均嵌入GlobalLocalBlock,瓶颈层采用双重GlobalLocalBlock增强全局建模。相比传统UNet,该模型能同时捕捉细节特征和整体结构,在保持计算效率的同时提升分割精度。原创 2025-08-12 20:41:13 · 117 阅读 · 0 评论 -
UNet改进(31):基于Adaptive Attention的UNet设计与实践
本文介绍了一种集成自适应注意力机制的UNet网络架构。该模型通过1×1卷积生成查询、键、值三个张量,利用矩阵乘法计算特征间的自注意力权重,并采用残差连接稳定训练。相比传统UNet,加入自适应注意力机制后mIoU提升5%,小目标召回率提高8%,尤其适用于医学图像和遥感影像分割任务。该方法无需额外监督信号,通过可学习的gamma参数自动调节注意力强度,实现了端到端的特征重要性学习。实验表明该设计在保持计算效率的同时,显著提升了模型对复杂场景和小目标的识别能力。原创 2025-08-10 21:30:42 · 200 阅读 · 0 评论 -
UNet改进(30):SageAttention在UNet中的4-Bit量化实现详解
本文提出了一种创新的4-Bit量化注意力模块SageAttention,并将其集成到UNet架构中。SageAttention通过在通道统计信息计算后应用4-Bit对称量化技术,显著降低了传统注意力机制的计算复杂度和内存消耗(理论内存节省8倍),同时保持模型精度。文章详细阐述了模块设计原理、量化函数实现及UNet集成方法,并分析了其计算效率优势(低精度运算加速、减少数据移动带宽)和精度保持机制(关键位置量化、自适应缩放)。原创 2025-08-05 19:32:31 · 163 阅读 · 0 评论 -
UNet改进(29):记忆增强注意力机制在UNet中的创新应用-原理、实现与性能提升
本文提出了一种记忆增强注意力机制,并将其集成到UNet架构中用于图像分割任务。该机制通过可学习的记忆矩阵存储长期知识,结合传统空间注意力,使模型能同时利用历史记忆和当前输入特征。实现上采用1x1卷积进行特征变换,门控机制更新记忆,并以残差方式嵌入UNet各层级。实验表明该方法能有效建模长期依赖,提升样本效率,特别适用于医学图像等具有重复模式的任务。文章详细阐述了PyTorch实现细节,并讨论了训练技巧、性能优势及未来改进方向,为视觉任务中的记忆增强架构提供了实用参考。原创 2025-08-02 19:00:22 · 177 阅读 · 0 评论 -
UNet改进(28):KD Attention增强UNet的知识蒸馏方法详解
本文提出了一种结合知识蒸馏与注意力机制的KDAttention模块,可集成于UNet架构实现高效特征迁移。该模块采用双模式设计,通过教师模型的注意力图指导学生模型聚焦关键区域,在编码器-解码器各层实现多层次知识蒸馏。实验显示仅增加4%参数量即提升4.1%的mIoU,特别适合医学影像等需高精度但资源受限的场景。方法支持训练/推理分离,具有残差连接、特征调制等优化设计,在保持轻量化的同时显著提升模型性能。原创 2025-08-02 18:39:27 · 278 阅读 · 0 评论 -
UNet改进(27):对抗注意力机制如何提升UNet的图像分割性能
本文介绍了对抗注意力机制(Adversarial Attention)在计算机视觉中的应用,这是一种让模型同时关注图像重要区域和被忽略区域的新型注意力机制。文章首先回顾了传统注意力机制的原理和局限性,然后详细解析了对抗注意力机制的双路径设计思想及其数学表达。通过一个完整的UNet实现案例,展示了如何将对抗注意力模块集成到网络架构中,包括基础构建块、下采样/上采样模块的具体实现。此外,还探讨了对抗注意力的训练策略、应用场景和优势,特别是在医学图像分割和遥感分析等领域的价值。原创 2025-07-30 19:39:22 · 66 阅读 · 0 评论 -
UNet改进(26):UNet结合分层注意力机制的图像分割深度解析
本文提出了一种改进的UNet架构UNetWithAttention,通过集成多层次注意力机制提升医学图像分割性能。该模型在传统UNet基础上,在双卷积块中引入通道和空间注意力,在上采样过程中加入特征融合注意力,并在瓶颈层添加全局注意力。通道注意力模块通过全局池化和MLP学习通道重要性,空间注意力模块则聚合通道信息定位关键区域。实验表明,这种分层注意力设计能有效捕获从局部到全局的多尺度特征,在不显著增加计算成本的前提下显著提升分割精度。该架构可灵活结合其他先进技术,为医学图像分析等密集预测任务提供了新思路。原创 2025-07-28 19:08:12 · 186 阅读 · 0 评论 -
UNet改进(25):集成可变形注意力的高效图像分割方法
本文探讨了可变形注意力机制及其在UNet架构中的应用。可变形注意力通过动态学习特征空间偏移,能够自适应关注不规则区域,相比传统注意力具有空间适应性、计算效率和灵活性优势。文章详细阐述了可变形注意力模块的实现,包括偏移掩码生成、可变形采样过程和注意力加权应用,并展示了将其集成到UNet双卷积块中的策略。实验表明,这种集成方案在医学图像分割等任务中能有效提升模型对形变的鲁棒性和细节保留能力。未来可探索多尺度注意力、轻量化设计等改进方向。原创 2025-07-26 14:30:59 · 161 阅读 · 0 评论 -
UNet改进(24):注意力机制-从基础原理到高级融合策略
本文系统探讨了如何通过引入各类注意力机制增强UNet在医学图像分割中的性能。文章分为基础篇、进阶篇和高级篇三个层级:基础篇介绍了时序注意力、可变形注意力、分层注意力等8种基础机制;进阶篇提出了5种混合注意力设计;高级篇则探讨了全局+局部+多尺度等复杂组合机制。实验表明,这些注意力模块在心脏MRI、肺部感染等任务中能提升2-15%的分割精度。文章还提供了硬件适配建议和完整实现代码,为研究者提供了全面的技术参考。未来方向包括NAS优化、量子注意力等前沿探索,为UNet在医疗影像等领域的应用革新提供了理论指导。原创 2025-07-22 21:18:45 · 145 阅读 · 0 评论 -
UNet改进(23):如何用SLCAM模块提升UNet的分割性能
本文提出一种改进的UNet架构,通过引入轻量化注意力模块(SLCAM)增强医学图像分割性能。SLCAM整合了通道和空间双重注意力机制:通道注意力采用全局池化和共享MLP学习通道权重,空间注意力通过7×7卷积捕捉上下文信息。网络在传统UNet基础上,在每个下采样和上采样块后加入SLCAM模块,并保持跳跃连接结构。实验表明,该方法能自适应聚焦重要特征,在不显著增加计算负担的情况下提升分割精度,特别适用于医学图像等需精确边界的场景。未来可探索三维注意力、动态参数调整等改进方向。原创 2025-07-18 19:13:29 · 182 阅读 · 0 评论 -
UNet改进(22):融合CNN与Transformer的医学图像分割新架构
本文提出一种改进的UNet架构,通过融合CNN的通道注意力和Transformer的空间注意力机制来增强医学图像分割性能。核心创新是HybridAttention模块,其中CNN分支通过SENet结构建模通道关系,Transformer分支实现多头自注意力捕捉长距离依赖,两者输出相加融合。模型采用标准UNet的编码器-解码器结构,每层DoubleConv后可选添加混合注意力。该设计既保留UNet捕捉局部细节的优势,又引入全局上下文建模能力,计算效率优于纯Transformer方案。原创 2025-07-13 19:35:06 · 120 阅读 · 0 评论 -
UNet改进(21):门控注意力机制在UNet中的应用与优化
本文提出了一种结合门控注意力机制的改进UNet架构,用于提升医学图像分割性能。该模型在传统UNet基础上引入动态注意力机制,通过门控信号筛选关键特征,解决了简单拼接跳跃连接的局限性。文章详细解析了门控注意力的数学原理和模型实现,包括双卷积块、下采样模块和核心的门控注意力模块设计。实验表明,该模型在Dice系数等指标上显著优于传统UNet,特别适用于处理边界模糊、小目标和低对比度的医学图像。改进后的UNet已成为医学图像分割的新基准,在脑肿瘤、肝脏病变等任务中展现出优越性能。原创 2025-07-11 20:16:14 · 556 阅读 · 0 评论 -
UNet改进(20):融合通道-空间稀疏注意力的医学图像分割模型
本文提出了一种改进的UNet架构——集成动态稀疏注意力机制的DSA-UNet,用于提升医学图像分割性能。该方法通过创新的双分支结构,结合通道注意力和动态稀疏空间注意力,自适应聚焦关键区域而忽略无关信息。实验表明,DSA-UNet在多个医学数据集上Dice系数提升1.3%-3.7%,仅增加约2%参数量,特别改善了小目标和复杂边界的识别。该模型兼具高效性和准确性,为临床辅助诊断提供了更可靠的技术方案。原创 2025-07-10 18:26:52 · 249 阅读 · 0 评论 -
UNet改进(19):基于残差注意力模块Residual Attention的高效分割网络设计
本文提出一种结合注意力机制的改进UNet网络,通过引入残差注意力模块(ResidualAttentionBlock)增强医学图像分割性能。该网络在传统UNet的U型结构基础上,创新性地将轻量级注意力机制与残差连接相结合,在编码器-解码器各层级实现特征重标定。改进后的网络具有三方面优势:通过注意力机制自适应聚焦关键特征区域,利用残差连接缓解梯度消失问题,采用模块化设计灵活配置注意力位置。原创 2025-07-09 20:51:51 · 276 阅读 · 0 评论 -
UNet改进(18):SaFA-UNet-融合对称感知注意力的医学图像分割新方法
本文提出了一种改进的UNet架构——对称感知注意力UNet(SaFA-UNet),用于医学图像分割。该架构在传统UNet基础上引入了对称感知注意力模块(SaFA),通过分析输入特征图的水平/垂直对称差异生成注意力图,显式利用医学图像的对称特性。文章详细阐述了SaFA模块的设计原理和实现代码,展示了其在UNet架构中的集成方式。这种创新设计特别适用于具有对称特性的医学图像分割任务,如器官分割和病变检测,能有效提升分割性能。SaFA模块具有计算效率高、自适应性强等优势,可灵活应用于不同医学图像分析场景。原创 2025-07-08 18:58:02 · 155 阅读 · 0 评论 -
UNet改进(17):基于代理注意力机制的改进UNet架构详解
本文提出了一种结合代理注意力机制的改进UNet架构,用于医学图像分割任务。该架构通过引入少量可学习的代理令牌作为注意力媒介,将计算复杂度从O(n²)降至O(n×k),有效解决了传统UNet处理长距离依赖的局限性。改进UNet在关键位置嵌入代理注意力模块,保持了UNet的对称结构优势,同时增强了全局上下文捕捉能力。实验表明,该方法在保持计算效率仅增加10-15%的情况下,可提升分割精度3-5%,特别适用于处理分散病灶和不同尺度结构。这种设计为CNN与Transformer的融合提供了新思路,在医学影像和遥感分原创 2025-07-08 18:34:27 · 194 阅读 · 0 评论 -
UNet改进(16):稀疏注意力(Sparse Attention)在UNet中的应用与优化策略
本文探讨了稀疏注意力机制在UNet架构中的应用,通过引入稀疏性约束显著降低了计算复杂度。文章详细分析了稀疏注意力的实现原理,包括通道注意力和空间注意力的结合方式,以及通过阈值方法实现的稀疏特性。在UNet架构中,稀疏注意力被集成到每个双卷积模块,使模型能聚焦关键区域,同时减少50%的计算量。相比传统注意力机制,稀疏注意力具有计算效率高、噪声抑制强等优势,特别适合医学图像分割等需要处理小目标的场景。未来可改进方向包括动态阈值策略和多样化稀疏模式。原创 2025-07-06 13:51:07 · 375 阅读 · 0 评论 -
UNet改进(15):分组注意力机制在UNet中的应用探索
本文提出一种分组注意力机制(GroupedAttention),将其集成到UNet架构中以提升图像分割性能。该机制将输入特征通道分组,在组内独立计算空间注意力,有效降低计算复杂度同时保留特征多样性。文章详细解析了分组注意力的数学原理、PyTorch实现及与UNet的集成方式,包括双卷积块中的注意力模块设计。相比全局注意力,分组注意力在计算效率、内存优化和模型表达能力方面具有优势,特别适合医学图像分割等密集预测任务。实现中采用分组卷积、爱因斯坦求和等技巧优化性能,并讨论了超参数选择和训练技巧。原创 2025-07-04 21:03:27 · 289 阅读 · 0 评论 -
UNet改进(14):基于DCT注意力机制的UNet优化设计与实践
本文提出了一种结合DCT频率注意力机制的改进UNet网络架构,用于增强图像分割性能。该设计在传统UNet的对称编码-解码结构基础上,引入离散余弦变换(DCT)提取频域特征,并通过注意力机制学习不同频率通道的重要性。核心创新在于频率注意力模块,它通过预计算的DCT权重矩阵实现频域转换,结合全局平均池化和全连接层生成注意力权重。实验表明,该方法能有效融合频域与空域特征,提升对多尺度特征和全局信息的捕捉能力,同时保持计算效率。该架构特别适用于医学图像、遥感图像等需频域分析的任务,为图像分割领域提供了新的改进思路。原创 2025-07-02 09:00:00 · 305 阅读 · 0 评论 -
UNet改进(13):结合位置注意力(Position Attention)在医学图像分割中的应用
本文提出了一种改进的UNet网络架构,通过引入位置注意力模块(PAM)增强医学图像分割性能。该模型在传统UNet的编码器-解码器结构中嵌入注意力机制,利用查询-键-值计算生成空间注意力图,使网络能自适应聚焦重要区域并建模长距离依赖关系。文章详细解析了PAM的原理与实现,包括特征变换、相似度计算和残差连接等关键步骤,并展示了模块化设计的完整网络架构。实验表明,这种注意力UNet能有效提升分割精度,特别适用于需要精确定位的医学影像任务。该研究为结合注意力机制改进分割网络提供了可行方案。原创 2025-07-01 09:00:00 · 341 阅读 · 0 评论 -
UNet改进(12):融合小波变换与注意力机制的图像分割新方法
本文提出了一种改进的WaveletAttentionUNet架构,通过结合小波变换和注意力机制来增强传统UNet的多尺度特征提取能力。该网络使用分组卷积模拟小波分解,将输入通道扩展为4个子带(LL、LH、HL、HH),并通过通道注意力机制自适应加权各子带特征。网络保留了UNet的编码器-解码器结构,在关键位置集成了WaveletAttention模块。实验证明该方法在医学图像分割等任务中能更好地保持边缘细节和复杂纹理特征,同时保持计算效率。原创 2025-06-30 09:00:00 · 424 阅读 · 0 评论 -
UNet改进(11):动态卷积注意力(Dynamic Conv Attention)的设计原理与医学影像分割
本文提出了一种基于动态卷积注意力机制的改进UNet模型,用于提升医学图像分割性能。该方法通过多专家系统和注意力机制,使模型能够自适应地调整卷积权重,增强对不同区域特征的提取能力。文章详细阐述了动态卷积原理、UNet架构设计、训练优化技巧以及在视网膜血管和肺部结节分割中的实验效果。结果表明,该方法显著提高了分割精度,Dice系数提升3-5%,同时保持了合理的计算开销。研究还探讨了多模态融合和轻量化等扩展方向,为医学图像分析提供了新的技术思路。原创 2025-06-29 12:13:49 · 532 阅读 · 0 评论 -
UNet改进(10):基于轴向注意力机制在UNet中的创新应用
本文探讨了轴向注意力(Axial Attention)机制及其在UNet架构中的应用。轴向注意力通过分解为水平和垂直方向操作,将计算复杂度从O(n²)降至O(n√n),使其适合处理高分辨率图像。文章详细解析了轴向注意力的实现,包括多头机制、查询-键-值投影等核心组件,并展示了如何将其集成到UNet的双卷积块中。这种结合保留了UNet的编码器-解码器结构,同时增强了全局上下文建模能力,特别适用于医学图像分割等需要精确定位的任务。原创 2025-06-28 14:00:38 · 521 阅读 · 0 评论 -
UNet改进(9):自注意力(Self-Attention)模块的设计与实现全解析
本文探讨了结合卷积神经网络与自注意力机制的改进版UNet架构。传统UNet存在局部感受野局限和长距离依赖建模困难等问题,通过在DoubleConv模块中嵌入自注意力层,既保留了CNN的局部特征提取能力,又增强了全局建模优势。文章详细解析了SelfAttention、DoubleConv等核心模块的实现,以及完整的编码器-解码器结构。这种混合架构特别适合医学图像分割等需要精确边界定位的任务,能有效提升小目标检测和边界定位精度。虽然会增加计算开销,但可通过选择性应用注意力层和优化策略来平衡。原创 2025-06-27 09:00:00 · 809 阅读 · 0 评论 -
UNet改进(8):空间注意力(Spatial Attention)-原理详解与代码实现
本文提出一种集成空间注意力机制的改进UNet网络,用于提升医学图像分割性能。该网络在传统UNet架构基础上,引入可自动学习关键区域的空间注意力模块,通过融合通道的平均和最大值特征,使用大核卷积捕获全局上下文关系,实现自适应特征选择。改进后的DoubleConv模块结合空间注意力,在保持UNet原有优势的同时,增强了网络对重要区域的聚焦能力。实验表明,该模型在肿瘤分割、血管提取等任务中表现优异,具有端到端训练、通用性强等特点,并可通过调整注意力核大小等参数适应不同场景需求。原创 2025-06-26 09:30:00 · 936 阅读 · 0 评论 -
UNet改进(7):基于SE注意力机制的改进UNet网络详解
本文提出了一种结合Squeeze-and-Excitation(SE)注意力机制的改进UNet网络(SE-UNet),用于提升医学图像分割性能。SE模块通过学习通道重要性权重,自适应增强关键特征,抑制冗余信息。网络在保持UNet基本架构的同时,通过嵌入轻量级SE模块,实现了更有效的特征选择和全局上下文建模。实验表明,SE-UNet在ISIC2018皮肤病变数据集上优于原始UNet和Attention UNet,Dice系数达0.843,且仅增加少量参数。可视化分析显示其对病变边界响应更精准。原创 2025-06-25 09:00:00 · 962 阅读 · 0 评论 -
UNet改进(6):基于注意力机制的多尺度医学图像分割方法
本文提出了一种集成多尺度注意力机制的UNet改进模型UNetWithAttention,用于提升医学图像分割性能。该模型在标准UNet架构基础上,设计了并行3×3、5×5、7×7卷积核的多尺度注意力模块,通过特征拼接和Sigmoid激活生成注意力权重,实现了对不同尺寸病变的自适应关注。模型采用分离式设计,将特征提取与特征选择解耦,在编码器-解码器各阶段嵌入注意力模块。实验表明,该方法在视网膜血管分割和肺结节检测任务中优于标准UNet,Dice系数和IOU分别提升2.6%和4.1%,同时保持计算效率。原创 2025-06-24 09:00:00 · 1033 阅读 · 0 评论 -
UNet改进(5):线性注意力机制(Linear Attention)-原理详解与代码实现
本文提出了一种结合线性注意力机制的改进UNet架构,用于高效医学图像分割。该模型在传统UNet的U形结构基础上,通过引入计算复杂度为O(N)的线性注意力机制,显著降低了内存消耗。模型采用对称编码-解码结构,在编码路径的前三个下采样块和解码路径的所有上采样块中应用注意力机制,以增强对重要特征的关注能力。实现细节包括通道缩减、批量归一化和可学习的特征混合参数,确保了数值稳定性和计算效率。原创 2025-06-23 23:39:59 · 1417 阅读 · 0 评论 -
UNet改进(4):交叉注意力(Cross Attention)-多模态/多特征交互
本文提出了一种改进的UNet架构——UNetWithCrossAttention,通过引入交叉注意力机制增强图像分割性能。该模型的核心是CrossAttention模块,它动态计算主特征与辅助特征之间的相关性,通过query-key-value投影和注意力权重实现特征融合。网络采用标准UNet的编码-解码结构,在下采样(Down)和上采样(Up)模块中嵌入可选的交叉注意力机制,基础构建块DoubleConv包含双卷积层和交叉注意力选项。原创 2025-06-22 20:50:06 · 850 阅读 · 0 评论 -
UNet改进(3):Local Attention增强的UNet网络-医学图像分割
本文提出一种改进的UNet网络,通过引入局部注意力机制增强医学图像分割性能。该方法在传统UNet编码器-解码器结构中,创新性地整合了通道注意力和空间注意力模块,使网络能自适应聚焦关键区域。注意力机制通过特征重标定增强有用信息并抑制噪声,显著提升了小目标分割和边缘检测的精度,同时保持较低计算开销。实验表明,该方法在肿瘤分割等任务中具有更好表现,为医学图像处理提供了新的优化思路。原创 2025-06-21 12:30:00 · 912 阅读 · 0 评论 -
UNet改进(2):基于注意力机制的UNet网络-医学图像分割的新思路
本文介绍了一种改进的UNet网络架构,通过引入全局注意力机制(GlobalAttention),显著提升了医学图像分割任务的性能。文章详细解析了注意力模块的设计原理,包括Query-Key-Value计算、空间注意力权重生成以及残差连接的应用,使网络能够自适应地关注重要区域,同时抑制无关背景信息。此外,文章还阐述了UNet的基础结构(如DoubleConv、Down和Up模块)及其改进方法,并分析了该网络在医学图像分割中的优势,如灵活的结构设计、端到端训练能力以及在小目标和复杂边界场景下的优异表现。原创 2025-06-20 18:48:45 · 618 阅读 · 0 评论 -
UNet改进(1):网络架构解析与实现
本文详细解析了U-Net在图像分割任务中的核心架构与PyTorch实现。U-Net采用独特的U形结构,包含编码器(下采样)和解码器(上采样)两部分,通过跳跃连接整合多层次特征。实现重点包括:双重卷积块(DoubleConv)进行特征提取,下采样模块(Down)压缩空间维度,上采样模块(Up)恢复分辨率并融合编码器特征,以及输出层(OutConv)生成分割结果。完整模型展示了从480×480输入到最终分割图的完整流程,具有通道数逐步变化(64→1024→1)的典型特征。原创 2025-06-17 23:31:20 · 668 阅读 · 0 评论