
VGG改进实战
文章平均质量分 93
解析经典VGG网络缺陷,分享轻量化、注意力机制等改进策略,实战提升模型效率与精度。
摸鱼许可证
不想躺平的牛马,不是好牛马。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
VGG改进(7):基于Spatial Attention的性能优化
本文介绍了空间注意力机制及其在VGG16网络中的应用。空间注意力通过计算特征图的空间权重,使网络能够聚焦于图像的关键区域。其核心实现包括平均池化、最大池化的拼接,以及卷积层生成注意力图。文章详细展示了如何在VGG16的每个卷积块后集成空间注意力模块,通过手动前向传播实现注意力加权。这种改进仅增加少量参数,却能显著提升模型性能。最后提供了完整的PyTorch实现代码,包括模型构建、参数统计和测试示例。原创 2025-09-02 19:40:42 · 666 阅读 · 0 评论 -
VGG改进(6):基于PyTorch的VGG16-SE网络实战
本文介绍了Squeeze-and-Excitation(SE)注意力机制在计算机视觉中的应用及其PyTorch实现。SE模块通过显式建模通道间依赖关系,自适应地重新校准特征响应,增强重要通道的权重。文章详细解析了SE的三步操作(Squeeze、Excitation、Scale)及其数学表达,并提供了完整的PyTorch实现代码。重点展示了如何将SE模块集成到VGG16网络中,在每个卷积块后添加SE模块以提升性能。原创 2025-08-30 13:06:12 · 933 阅读 · 0 评论 -
VGG改进(5):基于Multi-Scale Attention的PyTorch实战
本文提出了一种集成多尺度注意力机制的VGG16改进方案。该方案通过1×1、3×3、5×5卷积核并行提取多尺度特征,结合通道注意力与空间注意力机制,使模型能自适应关注不同层次的特征信息。模块采用残差连接保持训练稳定性,在VGG16各卷积块后插入以增强多尺度特征学习能力。实验表明该方法在细粒度分类等任务中表现优异,同时保持了计算效率。文章详细阐述了模块实现原理、网络集成策略及训练技巧,并提供了完整的PyTorch实现代码,为视觉任务中的多尺度特征学习提供了有效解决方案。原创 2025-08-26 19:18:20 · 718 阅读 · 0 评论 -
VGG改进(4):融合Linear Attention的高效CNN设计与实践
本文提出了一种在VGG16网络中嵌入线性注意力机制的方法。通过实现轻量级的LinearAttention模块,该方案在保持计算效率(复杂度O(N))的同时显著提升了模型性能。模块采用降维处理、点积注意力和残差连接等技术,插入到VGG16各卷积块后。实验表明,改进后的VGG16+LA在CIFAR-100上Top-1准确率提升1.7%,参数量仅增加0.8M。文章详细阐述了原理实现、训练优化策略,并提供了可视化分析和完整代码,为注意力机制在经典网络中的应用提供了实践参考。原创 2025-08-23 13:38:47 · 620 阅读 · 0 评论 -
VGG改进(3):基于Cross Attention的VGG16增强方案
本文探讨了交叉注意力机制在深度学习中的应用,重点介绍如何将其整合到VGG16架构中以增强模型性能。文章首先解析了交叉注意力的数学原理和优势,包括跨模态信息融合和动态特征选择能力;随后详细说明了在VGG16中实现交叉注意力的关键步骤和代码实现;最后通过实验验证了该方法的有效性,显示准确率提升3.5%。文章还提供了高级优化技巧和未来研究方向,为多模态学习任务提供了实用解决方案。原创 2025-08-20 22:33:41 · 854 阅读 · 0 评论 -
VGG改进(2):基于Local Attention的模型优化
本文提出了一种结合通道与空间注意力的局部注意力机制,可有效增强CNN特征表达能力。通过分析局部注意力模块的结构设计,详细阐述了其通道注意力分支(采用瓶颈结构捕获通道依赖)和空间注意力分支(生成位置重要性图)的实现原理,并展示了两者的融合方式。实验表明,将该机制集成到VGG16架构中(在卷积块后池化前插入)可使ImageNet上的Top-1准确率提升2.3%。文章还提供了初始化策略、计算效率优化等实现细节,并探讨了在迁移学习和其他架构中的应用潜力。这种平衡性能与计算成本的设计为注意力机制研究提供了新思路。原创 2025-08-12 20:23:02 · 1195 阅读 · 0 评论 -
VGG改进(1):基于Global Attention模块的详解与实战
本文提出了一种改进VGG16网络的注意力增强方法,通过引入全局注意力机制提升模型性能。文章详细介绍了GlobalAttention模块的结构设计,包含三个1×1卷积层分别处理Query、Key和Value,并结合残差连接确保训练稳定性。该模块被嵌入到VGG16的深层卷积块中,使网络能够自适应聚焦图像关键区域。实验表明,这种改进可在ImageNet等任务上获得1-3%的准确率提升,同时计算开销仅增加15-20%。原创 2025-08-10 21:58:56 · 917 阅读 · 0 评论