【大模型入门】智能化时代:没有大模型不行,只有大模型也不行

前言

为什么行业似乎对大模型的技术进步“脱敏”了?

曾经一段时间,海外OpenAI、Google、Meta、Anthropic等厂商,国内华为、百度、阿里、字节跳动等厂商,轮番发布新的基座模型并刷屏现象级热度,参数比拼成了主旋律,仿佛大模型之“大”,可以摧枯拉朽解决一切问题。

现在行业集体则显得理智了许多,并不是大模型技术没有突破了,而是大模型炫目的演示,如果不能转化为产业场景中的实际可用,即便是OpenAI连续12天的发布会,除了o3带来一点惊喜,大家只会觉得兴趣乏乏。

很多人没注意到,OpenAI在秀技术的同时,将重点放在产品形态、合作生态和落地建设上,这对于国内大模型是个好消息,毕竟国内厂商一向注重落地,以卷应用和卷工程为先,OpenAI的动作说明方向大致正确。

大模型技术当然很重要,这是业界的共识,没有大模型就没有先进生产力,但更多企业开始认识到,只有大模型无法形成智能时代的生产关系,千行百业的智能化是复杂难题,需要长远且系统化的思维和能力体系,超出技术本身的范畴。

*大模型落地趋势:技术纵向优化,生态横向扩张*

在上一个技术革命周期,中国互联网生态的繁荣,在于上层应用的百花齐放,底层技术其实并没有太多本质突破,中国玩家们能够开发出互联网的新玩法,甚至比大洋彼岸的互联网源发地更富有想象力。

到了大模型时代,周遭复杂的产业内外部环境提出了新的挑战,一个最直观的体现是,日前中国互联网协会、中国半导体行业协会、中国汽车工业协会、中国通信企业协会齐齐发声,警示行业用户采取措施,对“不再可靠、不再安全”的芯片审慎选择采购。

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!在这里插入图片描述

今时不同往日,大模型不是孤立存在的技术栈,中国企业不得不向底层根技术求索,在AI框架、操作系统、芯片等方面补全版图。尤其在大模型行业的落地初期,纵向优化是兼顾效率、成本等可操作性最高的方式,不同的软硬件深度协同,云平台是最适合承载的角色。

图片

这也是为何,无论国内还是国外,云厂商都成为生成式AI产业的主导力量,以简单的算力、算法和数据要素论,云厂商有大规模且经济的算力,并且可汇聚海量数据,通过云生态连接着产业上下游伙伴,能够把不同算法融入到企业真实场景中。因此,云平台成为了AI产业生长最合适的黑土地。

不少企业都开始认识到了技术纵向优化的重要性,也纷纷用云来承载大模型的创新创业,打造了一些样板场景。但是,随之而来一个更严峻的问题是,企业容易忽略经营的核心本质,做大模型是为了企业的智能化转型,技术是企业经营的必要不充分条件。

一位科技公司创始人曾表示,技术从来不是护城河,企业沉淀的应该是品牌、是客户关系、是行业标准、是生态,那些才是真正的护城河。当然它自身的护城河,肯定是打造一个强大的,能够去建设这样护城河的组织。

近期一家大模型独角兽CEO也提到,技术带来的领先窗口非常短暂,一旦巨头看到验证了TC-PMF(技术成本×产品市场契合度),他们会有很多方法超越,最终胜出的应用不只需要有技术优势,还需要在时间窗口内打造持续优势,比如品牌优势、社交链、用户数据、用户黏性等。

历次技术革命都不缺少原创新,发明集成电路的仙童半导体,开发JAVA语言的太阳微系统公司,发明数码技术的柯达,推出全球第一款商用手机的摩托罗拉。他们都曾手握技术霸权,两相对比,如今的企业在研究技术的同时,也应该关注管理、品牌、生态等经营环节。

和互联网一样,大模型只是一种技术手段,企业要通向智能化时代,会面临很多非技术难题,有时候成败就取决于认知,如何横向扩张企业的生态能力,值得企业格外重视。

*先享受大模型红利的企业,做对了什么*

过去一年,一批大模型先进企业涌现出来,他们要么通过大模型降本增效,要么创造出了新的产品和新的业务模式,或者是改进用户体验、优化工作流程、提升员工生产力。互联网、汽车、零售和医疗等行业,是大模型落地的先锋领域。

图片

**移动游戏是互联网热门赛道之一,**网易雷火今年推出的现象级产品永劫无间,在游戏运营探索生成式AI落地,推出了AI Copilot功能,能够同时处理文字、语音、图像等多模态信息,在游戏对战和闲聊中提供与真人“组队”相近的交互体验。

这款当下仍在手游周榜上迅猛蹿升的产品,无疑初步验证了全新运营工具提高用户粘性与付费意愿的效果,而这一切无需巨额硬件投资和建设周期,华为云提供了充足的计算资源和完善的工具链支撑。

此外,华为鸿蒙操作系统、终端云生态等能力,也可满足游戏行业的增强体验、广告营销等需求。据华为官网数据显示,互联网领域90%以上的中国互联网企业都选择了华为云。

在汽车行业,智能化是车企竞争的焦点,自动驾驶是智能汽车的核心,一批车企选择华为云打造自己的自动驾驶能力。华为云打磨的一站式自动驾驶云服务八爪鱼,已帮助一汽、东风、长安等企业在1周内交付之前6个月才能搭建完成的研发平台;与此同时,华为云基于多个实战项目积累,可以为车企提供20万+仿真场景库,加速客户仿真业务进程。

华为云盘古汽车大模型涵盖数据传输、数据预处理、数据标注、模型训练、仿真测试、实车测试全流程的完整工具链,海量真实数据标注和各种复杂场量Corner Case的仿真生成周期都得以大幅缩短,预集成的场景库和200多项测评指标体系,则能够帮助车企系统高效完成算法评估,进一步加速端到端智驾落地。

对于内卷的汽车行业,时间就是金钱,效率就是“生死线”,能否善用AI技术,可能就是“先进”与“先烈”的差别。目前95%的Top30车企选择华为云,很大程度上是为了博得未来的入场券。据悉,华为云连续三年中国汽车云市场份额第一,车联网云服务和自动驾驶云服务第一。

在医疗行业,创新药研发拥抱AI俨然已成必选项,一家国内顶级生物科技公司专家感慨,其公司大模型开发部署饱受技术问题困扰,从异构算力集成到CUDA代码迁移,在兑现AI4S愿景之前,已经为搭建基础研发平台消耗大量资源,而刚刚跑通技术问题后,原定的国产GPU初创企业却又面临流片困境。

不少药企选择与华为云携手,盘古大模型在药物研发领域具有显著的实践成果,盘古药物分子大模型全新升级,增加了包括靶点口袋发现、分子对接等在内的十大AI制药核心场景,利用海量数据,通过自监督学习减少标注数据需求,将药物研发效率提升33%,优化后的分子结合能提升40%以上,实现药物早研阶段的全流程加速,正在助力中国药企突破创新药从研发到上市,平均成本超过10亿美元、研发周期大于10年的医药界公认“双10定律”。

而在整个医药健康产业生态中,云南白药、哈药集团、天士力等500+医药企业选择华为云,AI正在重构场景、流程、组织乃至商业模式。

以天士力和华为云共同开发的“数智本草”中医药大模型为例,整合了海量的数据资源,包括古医书、经典方剂、现代中成药配方、学术文献、天然化合物数据库、临床试验方案以及中药专利等。通过智能问答、交互计算和报告生成三种方式,该模型为从中药机制解析到中药复方及组分创新开发的全过程提供研发支持。

在零售行业,零售业商家们对毛利率“锱铢必较”,普遍选择通过“云底座”解决智能化转型的技术、经验和资源需求,中国领先的零售企业80%选择华为云做智能化伙伴。

作为羽绒服行业的领军企业,波司登在数字化转型过程中也在大力拥抱AI,在华为云的帮助下,通过AI能力达成门店的销量预测,对于几百款+上千色+上万码的服饰,可以轻松简单的分配到不同的门店,从而优化生产计划、提高库存周转率以及智能补货。

先享受大模型红利的企业,首先在认知上就快人一步,他们很多本就是所处行业得佼佼者们,但后进企业也不必忧心,行业领先厂商就是抓住了新的技术和产业变革,才一步步成为行业先进,大模型提供了前所未有的机会窗口,站上AI的潮头,大概率就走上了通向“先进”的道路。

*华为云:理解大模型,跳出大模型*

如果观察这些智能化先进企业的实践,他们存在一些共性,大模型技术的引入是结果,华为云提供了纵向优化的技术能力,以鲲鹏、昇腾、鸿蒙、盘古为标志的高可靠、高可用的软硬件技术基座,通过云服务的形式对外输出,让先进企业能够率先解决大模型技术难题。

譬如,华为云通过昇腾云服务支持好百模千态,华为云整合了云化算力、模型开放、模型托管到生态系统的全方位服务,千亿参数模型在昇腾云上训练,可以支持40天无中断,平均故障恢复时间小于10分钟,昇腾云服务已经全面适配行业主流的超过100多个开源及闭源大模型,为百模千态的发展提供了强劲动力。

图片

盘古大模型已经落地到矿山、电力、气象、医药等多个行业,400多个模型的应用场景,为企业解难题、做难事。近日,国际权威分析机构沙利文(Frost & Sullivan)发布的《中国行业大模型市场报告2024》报告显示,在大模型领域中,华为云取得七项领先,位居医疗、药物、气象以及汽车4个领导者象限;《2024年中国行业云公有云市场报告》中显示,华为云在多个行业表现卓越,获得文娱社交和汽车公有云整体市场第一,文娱社交AIGC内容创新、音视频行业、车联网和自动驾驶四个细分领域市场第一,并在金融公有云和游戏公有云两个市场增速第一。

放到更广的视野观察,智能化时代,全球经济、技术、生态等环境发生巨变,千行万业需要在不确定的未来找到确定性,华为云不只解决了技术难题,也在不断与深入行业做难事。此外,华为自身的数字化实践经验,全球生态和资源等,都是企业生长难得的养料,这是单纯技术服务商给不了的能力。

可以说,华为云是在理解大模型的基础上跳出大模型本身,既解决大模型纵向技术整合的落地难题,又为企业的智能化转型长远谋划。

华为将30多年在ICT领域的技术积累、产品解决方案,以及在自身数字化转型中沉淀的经验、方法、技术和工具,以云服务的形式开放给客户,逐步帮助企业进行数字化转型。

企业还可以站在华为的肩膀上走向全球,例如今年华为云发布了新的伙伴能力计划,从产品技术、场景服务、行业经验三个方向来加速伙伴能力成长,目前华为全球开发者已经超过1100万,其中华为云在全球已拥有超过760万开发者,汇聚了4.5万伙伴,联合构建了500多个行业解决方案,12000多款云商店的商品。华为云不断完善的生态体系,可助力企业能力提升与商业成功。

智能化时代,没有大模型不行,只有大模型也不行。企业将会愈发清楚的认识到,智能化不仅需要能解决技术难题的云+AI,更需要能够带来商业和品牌等多方面提升的后盾,如此才能真正走向确定的智能化未来。

好啦,以上就是本期**「大模型高能玩法」的全部内容!想获取更多大模型的独家深度资料?🔥 快关注 我**,一键解锁前沿技术解析、实战案例和进阶秘籍📚!

从零入门大模型:最全学习路线、实战案例与资源汇总(2025最新版)

人工智能大模型(如ChatGPT、DeepSeek等)正驱动着技术变革,掌握相关技术已成为提升竞争力的关键。然而,大模型技术涉及领域广泛,学习曲线陡峭。为了帮助大家系统性地学习和掌握大模型技术,我们整理了一份资源包,旨在提供从理论基础到实践应用的全面支持。

这份资源包包含以下内容:

大模型学习路线与阶段规划: 提供清晰的学习路径,帮助学习者了解不同阶段的学习目标和所需技能。

人工智能论文PDF合集: 收录了重要的大模型相关论文,涵盖Transformer架构、预训练模型、微调技术等关键领域,方便深入研究。

52个大模型落地案例合集: 汇集了不同行业的大模型应用案例,展示了如何将大模型技术应用于实际问题,并提供参考实现思路。

100+本数据科学必读经典书: 涵盖机器学习、深度学习、自然语言处理等领域的基础理论和算法,为理解大模型技术奠定基础。

600+套大模型行业研究报告: 提供市场分析、技术趋势、竞争格局等信息,帮助了解大模型技术的行业应用和发展前景。

这份资源包对于想要系统学习大模型技术的人来说,无疑是一份极具价值的指南。首先,要充分利用其中的“大模型学习路线与阶段规划”,这相当于你的学习地图,这份指南出自于我们体系教程《NLP大模型人才培养计划》。

务必仔细研读,了解每个阶段的目标、所需技能和学习内容,并根据自身情况进行调整,制定个性化的学习计划。可以将大的学习路线分解为更小的、可实现的目标,并设定完成时间,这有助于保持学习动力和跟踪进度。

添加👇方联系方式领取【保证100%免费

在这里插入图片描述

咨询大模型人才培养计划 &免费领取本文资源

大模型学习路线与阶段规划

本路线旨在帮助学员掌握大模型相关技术栈,以及大模型在行业场景中的应用,包含企业级大模型项目实战。

各阶段详细学习内容:

阶段一:自然语言处理(NLP)与AI基础

  • 目标: 掌握NLP与深度学习AI的基础知识,为后续大模型学习打下坚实基础。

  • 学习内容:

    • 自注意力机制(self-attention)
    • 如何让模型学习到文本中不同语段的上下文联系?
    • 巧用位置编码,传递语句前后顺序关系
    • 核心计算流程:编码(Encoder)和解码(Decoder)
    • 实践任务一: 使用Pytorch手撸Transformer
    • 实践任务二: 全能的Transformer,解决时序预测问题
    • 循环神经网络结构拆解
    • 如何解决长序列的知识遗忘问题?—长短期记忆神经网络
    • 基于PyTorch实现RNN代码架构
    • 如何赋予模型双向学习能力?
    • 在不同任务中的RNN的用法区别:分类、序列标注等
    • 实践任务: 基于RNN的分词任务实战
    • 卷积神经网络结构拆解
    • 基于PyTorch实现CNN代码架构
    • 卷积网络中的经典层(Layer)及其实现方法
    • 卷积网络中的经典模块(Module)及其实现方法
    • 使用卷积网络建模的经典模型介绍
    • 实践任务: 使用CNN搭建文本分类模型
    • 实践任务二: 深度学习开发环境搭建
    • 实践任务一: 从0实现逻辑回归模型
    • 人工智能的发展路径
    • 机器学习优化方法和应用
    • 深度学习的发展和应用范式的演变
    • 卷积神经网络(CNN)
    • 循环神经网络(RNN)
    • Transformer架构

阶段二:自然语言处理实战

  • 目标: 结合实际场景,掌握NLP技术栈中的任务分类及相关技术。

  • 学习内容:

    • BERT的模型结构解析
    • BERT预训练方法
    • Mask掩码机制:让模型自己做「完形填空」
    • 长段落上下文信息增强,预测下一句(NSP训练策略)
    • 数据准备: 准备训练数据、基础文本预处理
    • 最简单的编码方法:One-Hot
    • 词袋表示(N-Grams词袋)
    • 基于词频统计的表示方法(TF-IDF)
    • 词嵌入(Word2vec、Glove、FastText)
    • 可视化词向量
    • 实践任务: 手写Word2vec
    • 问题定义
    • 数据获取方法
    • 数据探索(EDA)&数据整理(Wrangling)&预处理(Initial Preprocessing)
    • 如何将数据转化成机器可识别的语言?— 特征工程
    • 算法的高级艺术:抽象方法和建模策略
    • 如何衡量算法模型的好坏?—评估方法及其重要性
    • 将自然语言处理算法部署成应用能力
    • 实践任务: 数据分析和预处理实战
    • 第一个自然语言处理流程
    • 文本表示方法
    • 预训练模型 - BERT

阶段三:多模态大模型与知识图谱自动化构建

  • 目标: 掌握多模态大模型架构,以及如何利用大模型自动化构建知识图谱。

  • 学习内容:

    • 知识图谱Schema建设方案
    • 基于大模型的实体识别和关系构建方法
    • 基于大模型的输入存储和图谱查询方法
    • 自动化迭代策略
    • 实践内容:
    • 学习如何使用大模型根据行业数据特点帮助简历并完善知识图谱schema
    • 学习如何在Prompt中通过ICL增强大模型对任务的理解
    • 学习如何通过微调大模型,优化实体识别和关系关系构建效果
    • 学习如何让大模型理解知识图谱的总体架构,从而让大模型能够根据用户输入去自动生成数据存储和查询知识图谱的指令
    • 如何驱动大模型周期性得评估知识图谱结构的优劣,自动生成优化方案
    • 学习如何构建指令模板
    • 学习如何微调训练多模态大模型
    • 搭建图像要素自动识别和多模态问答demo系统
    • 多模态大模型
    • 基于大模型的知识图谱自动化构建项目实战

阶段四:企业级大模型应用落地方案 - RAG实战

  • 目标: 从0-1搭建通用性RAG应用框架,并应用于多个行业场景。

  • 学习内容:

    • 企业级应用框架设计与实现
    • 三个标准流程的抽象与搭建方法(RAG.Chain)
    • 灵活的功能组件实现策略(RAG.Module)
    • 自定义文档加载器:PDF图文信息增强识别
    • 自定义开发文档分割组件:中文段落切分优化方案
    • 依赖服务的接入方法:向量数据库、大模型推理服务、embedding、重排序模型
    • RAG评估流程搭建
    • 基于LangSmith和langfuse搭建RAG流程监控系统
    • RAG场景化进阶:基于知识图谱的增强策略(接入现有图谱数据、GraphRAG)
    • RAG任务介绍 & 技术发展历程
    • RAG依赖哪些组件和能力?(向量数据库、大模型推理服务)
    • 模块化RAG系统架构设计 — 从理论到实战
    • 主流的(开源)RAG应用开发框架
    • RAG生态工具和能力
    • 实践内容:

阶段五:Agent项目实战

  • 目标: 掌握Agent技术,应对系统状态变化不可控的复杂场景。

  • 学习内容:

    • 学习如何通过Prompt引导Agent进行推理
    • 学习Agent推理和验证流程的实现方法
    • 学习如何让Agent在合适任务上调用外部能力来增强效果
    • 学习如何搭建多Agent系统
    • 学习如何解决多跳问题:ReAct的实现方法
    • 「人人都是AI开发专家」实践一:基于ModelScope Agent搭建一个应用开发助手
    • 「人人都是AI开发专家」实践二:基于Coze搭建一个知识问答机器人
    • Agent通用架构介绍
    • Agent中的规划(Planning)和推理(Reasoning)能力
    • Agent的文本输出和工具调用
    • 经典AI Agent案例分析
    • ModelScope-Agent项目拆解
    • 实践内容:

阶段六:大模型应用算法工程师面试辅导

  • 目标: 提升面试技巧,成功斩获大模型应用算法工程师职位。

  • 学习内容:

    • 在企业中的发展路径
    • 职业规划:如何快速升职加薪
    • 技术层面如何持续性的自我提升
    • 优秀简历模板讲解
    • 典型简历抽样点评
    • 大模型面试知识点整理和分享(八股文)
    • 一线互联网大厂的面试流程及侧重点
    • 面试技巧分享
    • 面试时的几大忌讳
    • 面试攻略及指导
    • 大模型应用算法工程师的职业规划

人工智能论文PDF合集

切忌贪多嚼不烂。建议从综述性论文入手,了解特定领域的整体情况和关键研究方向。同时,关注奠定大模型基础的经典论文,例如 Transformer 架构的论文。阅读时,精读与泛读结合,对于重要的论文仔细阅读并理解细节,对于其他论文则快速浏览以了解主要思想。务必做好笔记,记录论文的关键信息、创新点和实验结果,方便以后回顾。

52个大模型落地案例合集

52个大模型落地案例合集”是理论联系实际的绝佳素材。通过案例分析,了解大模型是如何应用于实际问题的,并思考这些案例是否可以应用于你感兴趣的领域。学习案例中的成功经验和遇到的挑战,并尝试复现一些简单的案例,加深理解。

100+本数据科学必读经典书

“100+本数据科学必读经典书”是夯实基础的基石。将书籍按照主题进行分类,例如机器学习、深度学习、自然语言处理、统计学、编程等,并根据自身背景和学习目标,选择合适的书籍。

从入门书籍开始,逐步深入。阅读时,参考其他读者的评论和推荐,选择高质量的书籍,并避免贪多嚼不烂,一次只读几本书,确保理解并掌握内容。

600+套大模型行研报告

“600+套大模型行研报告”是了解行业趋势的重要窗口。通过阅读行研报告,了解大模型技术的最新发展趋

部分资源内容展示

图片

图片

图片

图片

在这里插入图片描述

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值