基于改进多目标蜣螂优化算法的生鲜多温共配路径优化研究

导读:

考虑到生鲜配送场景下消费者需求零散化、个性化和及时性的特点,本文开展了生鲜多温共配路径问题研究。首先,基于客户对生鲜配送时间是否及时准确的敏感程度,引入时间抵制度模型,构建以运输成本最小、客户时间抵制度最小为目标的生鲜多温共配路径多目标优化模型。其次,针对蜣螂优化算法的改进,设计了一种以tent混沌映射与逆向学习策略生成初始种群,在蜣螂觅食阶段引入自适应步长策略与凸透镜成像策略,滚球阶段引入曲线自适应黄金正弦策略的多策略改进的多目标蜣螂优化算法用于模型求解。最后,通过算例分析验证模型和算法的有效性,与未改进的多目标蜣螂优化算法进行对比,验证了改进多目标蜣螂优化算法性能的优越性。

作者信息:

李昕鹏刘勤明*叶春明汪宇杰:上海理工大学管理学院,上海;倪静然:北部湾大学东密歇根联合工程学院,广西 钦州

正文

从客户角度出发,为满足不同客户对配送时间的个性化需求,本文引入了时间抵制度模型;从企业角度出发,为了提高企业的市场竞争力,构建多温共配路径优化问题最小运输成本模型。构建了时间抵制度最小以及运输成本最小的双目标多隔间车辆路径问题模型。同时,针对问题模型和蜣螂优化算法的特点,进行算法改进。

​构建多温共配生鲜配送路径问题模型,需要综合考虑现实因素的影响,因此,本文设置了一些假设条件。

(1) 有且仅有一家配送中心,且该配送中心使用的车辆类型统一,每一辆蓄冷车从配送中心出发,完成配送任务后必须返回配送中心。

(2) 客户点的位置、时间窗要求和需求量等信息已知,蓄冷箱规格一致。

(3) 每个客户点只能由一辆蓄冷车服务,但每辆蓄冷车可以为多个客户点提供服务,每辆车服务客户点的生鲜需求量总和不得超过其最大载重量。

多策略改进的多目标蜣螂优化算法求解流程如下,算法流程图如图1所示:

Step 1:初始化参数。设定种群规模,最大迭代次数,偏移控制参数a和b 等。

Step 2:种群初始化。使用tent混沌映射和逆向学习策略生成初始解。基于公式(28)和(29)确定搜索空间的边界合并初始解pi 和反向解OPi ,形成初始种群。

Step 3:适应度计算。计算每个个体的适应度值,进行非支配排序和拥挤距离计算。

Step 4:位置更新。更新滚球行为、繁殖行为、觅食行为和偷窃行为的蜣螂个体位置,加入曲线自适应黄金正弦策略、自适应步长控制和凸透镜成像策略更新蜣螂个体位置。计算新位置的适应度值,若前者更优则,保持原个体位置不变,若当前更优更新为当前个体。

Step 4.1:基于公式(30)~(34),在蜣螂滚球阶段进行个体位置更新,当Ps<0.5 时,使用自适应步长策略;否则,使用凸透镜成像策略进行位置更新。

Step 4.2:基于公式(35),当蜣螂遇到障碍时,使用切线函数模拟蜣螂位置更新。

Step 4.3:基于公式(36),对蜣螂产卵进行位置更新。

Step 4.4:基于公式(37)~(40),使用曲线自适应黄金正弦策略,在蜣螂觅食阶段进行位置更新。

Step 4.5:基于公式(41),模拟蜣螂的偷窃行为,进行位置更新。

Step 5:结束。输出当前的Pareto非劣解集。

为了验证基于多策略改进的多目标蜣螂优化算法对多车厢车辆路径的求解性能,通过对Solomon VRPTW基准数据集的重新设计,选取50顾客规模的部分SolomonVRPTW r101算例集进行数值实验,以优化运输总成本为目标一,优化时间抵制度为目标二。

以r101为例,经过计算得到28个非劣解集,通过最优解选择方法,得到最优的Pareto非劣解,该解对应的成本为2714元,时间抵制度为0.295,此时,采用五辆车完成配送任务。各车具体路径如图2所示。

为进一步验证模型和算法的适用性,在参数设置完全相同的情况下,将MSNSDBO算法与NSDBO算法各运行十次后,两种算法的Pareto非劣解分布图如图3所示,MSNSDBO算法在多次运行中表现出更优的性能,首先,MSNSDBO算法在生成非劣解数量上占据优势,这表明该算法在平衡时间抵制度和运输成本这两个优化目标时,具有更高的稳定性和效率。其次,MSNSDBO算法的Pareto前沿分布更为均匀,显示出更好的解空间探索能力。

为了验证MSNSDBO算法的性能,将MSNSDBO算法与多目标粒子群算法(MOPSO)、多目标灰狼算法(MOGWO)、NSDBO算法进行对比分析。仿真结果如图4所示,在运输成本方面,MSNSDBO算法计算结果为2562.68元,相较于MOPSO、MOGWO、NSDBO算法,分别降低了8.76%、8.39%、1.31%,其收敛能力具有一定的优势。具体而言,MSNSDBO算法在早期迭代中能迅速找到较优解。随着迭代次数的增加,MSNSDBO算法可以稳定收敛至较低的成本值。

为了进一步探究MSNSDBO算法的求解性能,在时间抵制度方面,仿真结果如图5所示。MSNSDBO算法计算结果为0.2838,相较于MOPSO、MOGWO算法,分别降低了4.44%、5.65%。MSNSDBO算法计算结果相较于NSDBO算法,增加了约0.532%。同时,MSNSDBO算法在每次迭代中均能找出更优的时间抵制度,其在时间抵制度目标函数方面具有更好的求解能力。

为了进一步验证MSNSDBO算法求解不同算例的适用性,选取选用12个50客户规模的Solomon基准数据集进行改造,并与NSDBO、MOPSO、MOGWO算法进行比较,结果如表4所示。其中,Cbest、Obest和pn 分别表示算法求解中得到平均最小运输成本和最小时间抵制度和Pareto非劣解个数。

对比结果表明,在算法运行时间上,MSNSDBO算法运行时间在大多数算例实验中要明显短于其他三种算法,其中,MSNSDBO算法的平均运行时间为29.09 s,分别比NSDBO、MOPSO、MOGWO算法缩短了4.25%、4.72%、3.19%。在Pareto非劣解的数量上,MSNSDBO算法的Pareto解的平均数量约为25.33,其在八个算例测试中均具有更多的帕累托非劣解。在运输成本方面,MSNSDBO算法的平均运输成本约为2639.08,分别比NSDBO、MOPSO、MOGWO算法缩短了4.25%、4.72%、3.19%。在时间抵制度方面,MSNSDBO算法的平均时间抵制度为0.292,分别比NSDBO、MOPSO、MOGWO算法减少了约3.15%、2.47%、0.78%。可以看出,在求解多温共配车辆路径优化问题中,MSNSDBO算法具有一定的优势。

结论

首先,使用基于多策略改进的多目标蜣螂优化算法在解决生鲜多温共配问题时,能显著提高求解质量和效率。其次,多策略改进的多目标蜣螂优化算法可以有效处理不同标准算例的多车仓车辆路径优化问题。

基金项目:

国家自然科学基金资助项目(71632008, 71840003);

上海市2021度“科技创新行动计划”宝山转型发展科技专项项目(21SQBS01404);

上海理工大学科技发展项目(2020KJFZ038)。

原文链接:基于改进多目标蜣螂优化算法的生鲜多温共配路径优化研究

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值