力扣编程题解(lce)

190.颠倒二进制位

题目

颠倒给定的 32 位无符号整数的二进制位。

示例 1:
输入:n = 43261596
输出:964176192
解释:

整数二进制
4326159600000010100101000001111010011100
96417619200111001011110000010100101000000

示例 2:
输入:n = 2147483644
输出:1073741822
解释:

整数二进制
214748364401111111111111111111111111111100
107374182200111111111111111111111111111110

题解

这道题想让我们将一个十进制数,转换成32位的二进制数,将其反过来(二进制状态下),再求出反转之后的数(十进制)

很多人读这道题会走入一个误区,就是:
这里给定的n到底是二进制数还是十进制数

观察示例我们不难发现:
给定的数为十进制,输出结果也为十进制

所以我们这里需先转成二进制再执行反转
所以第一步,先将给定的数n转换成二进制:

n=bin(n)[2:]	#将n转换成二进制,并使用切片操作去除前导零

后面看似只要将其翻转后再输出十进制就行了,但题目给定的条件是32位二进制数,但在python中,二进制最前面的0被省略了,所以我们这一步要先加上缺失的0
得到下面一行代码:

n='0'*(32-len(n))+n	#用32减去现在n的长度,即可以得到被舍去的0有多少个,再将其与n进行拼接操作

下一步,反转字符串:

n=n[::-1]#使用切片操作反转字符串

最后一步,输出十进制数:

return int(n,2)	#后面的2这个参数是进制的意思,即将n看成几进制来转十进制的意思

组合一下,完整代码为:

class Solution:
    def reverseBits(self, n: int) -> int:
        n=bin(n)[2:]
        n='0'*(32-len(n))+n
        n=n[::-1]
        return int(n,2)

70.爬楼梯

题目

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

提示:
1 <= n <= 45

题解

对于爬楼梯问题,脑海里首先想到的就是使用递归算法,但此算法需进行大量重复运算,在本题中会超时,时间复杂度更是来到了O(2^n),当数据量大的时候,花费时间呈指数级增长

这道题不使用递归,还能用什么呢🤔

其实可以把这道题看作类斐波那契数列来计算
斐波那契数列,即从第三项开始,往后每一项的值都等于前两项之和

所以这道题,如果给定的数n在3以内,则有n种方法,若给定的数在3以上,则先给定两个值1和2(指一次要上几个台阶),再使用for循环,然后按照斐波那契数列的写法,把a换成b,把b换成a+b。最后,再输出b即为本题结果
可得到代码为

class Solution:
    def climbStairs(self, n: int) -> int:
        if n<=3:	#如果剩余阶梯在3或以下
            return n	#直接return n
        a, b = 1, 2	#给定a和b的初始值
        for i in range(3, n + 1):	#使用for循环,循环次数由剩余阶梯数来决定
            a, b = b, a + b	#交换值
        return b	#循环结束后返回b的值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值