190.颠倒二进制位
题目
颠倒给定的 32 位无符号整数的二进制位。
示例 1:
输入:n = 43261596
输出:964176192
解释:
整数 二进制 43261596 00000010100101000001111010011100 964176192 00111001011110000010100101000000
示例 2:
输入:n = 2147483644
输出:1073741822
解释:
整数 二进制 2147483644 01111111111111111111111111111100 1073741822 00111111111111111111111111111110
题解
这道题想让我们将一个十进制数,转换成32位的二进制数,将其反过来(二进制状态下),再求出反转之后的数(十进制)
很多人读这道题会走入一个误区,就是:
这里给定的n到底是二进制数还是十进制数
观察示例我们不难发现:
给定的数为十进制,输出结果也为十进制
所以我们这里需先转成二进制再执行反转
所以第一步,先将给定的数n转换成二进制:
n=bin(n)[2:] #将n转换成二进制,并使用切片操作去除前导零
后面看似只要将其翻转后再输出十进制就行了,但题目给定的条件是32位二进制数,但在python中,二进制最前面的0被省略了,所以我们这一步要先加上缺失的0
得到下面一行代码:
n='0'*(32-len(n))+n #用32减去现在n的长度,即可以得到被舍去的0有多少个,再将其与n进行拼接操作
下一步,反转字符串:
n=n[::-1]#使用切片操作反转字符串
最后一步,输出十进制数:
return int(n,2) #后面的2这个参数是进制的意思,即将n看成几进制来转十进制的意思
组合一下,完整代码为:
class Solution:
def reverseBits(self, n: int) -> int:
n=bin(n)[2:]
n='0'*(32-len(n))+n
n=n[::-1]
return int(n,2)
70.爬楼梯
题目
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
提示:
1 <= n <= 45
题解
对于爬楼梯问题,脑海里首先想到的就是使用递归算法,但此算法需进行大量重复运算,在本题中会超时,时间复杂度更是来到了O(2^n),当数据量大的时候,花费时间呈指数级增长
这道题不使用递归,还能用什么呢🤔
其实可以把这道题看作类斐波那契数列来计算
斐波那契数列,即从第三项开始,往后每一项的值都等于前两项之和
所以这道题,如果给定的数n在3以内,则有n种方法,若给定的数在3以上,则先给定两个值1和2(指一次要上几个台阶),再使用for循环,然后按照斐波那契数列的写法,把a换成b,把b换成a+b。最后,再输出b即为本题结果
可得到代码为
class Solution:
def climbStairs(self, n: int) -> int:
if n<=3: #如果剩余阶梯在3或以下
return n #直接return n
a, b = 1, 2 #给定a和b的初始值
for i in range(3, n + 1): #使用for循环,循环次数由剩余阶梯数来决定
a, b = b, a + b #交换值
return b #循环结束后返回b的值