💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
EI复现:基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度研究
💥1 概述
文献来源:
摘要:“30*60”双碳背景下,为实现低碳排放,需从低碳政策和低碳技术两个路径进行协调。为此建立了含P2G-CCS(power to gas and carbon capture system,P2G-CCS)耦合和燃气掺氢的虚拟电厂(virtualpowerplant,VPP),并提出了基于阶梯碳交易机制的VPP优化调度策略。首先,在低碳技术层面,针对P2G-CCS耦合和燃气掺氢子系统,建立了掺氢燃气轮机、掺氢燃气锅炉、两段式电转气(power to gas,P2G)和碳捕集系统(carboncapturesystem,CCS)的数学模型;其次,在低碳政策层面,建立了阶梯碳交易模型对系统碳排放进行约束;最后,在建模基础上,提出了以碳交易成本、购气和煤耗成本、碳封存成本、机组启停成本和弃风成本之和最低为目标函数的优化调度策略。对建立的模型线性化处理后,采用MATLAB调用CPLEX和粒子群算法进行求解,通过设置不同的情景进行对比,验证了所提模型的有效性,并分析了不同固定掺氢比、变掺氢比、不同的阶梯碳交易参数对VPP低碳性和经济性的影响。
关键词:
碳捕集作为一种低碳化技术,利用碳捕集技术对火电厂低碳化改造,实现高碳火电机组低碳化,
在低碳电力趋势下具有重要的研究意义。文献[1]深入分析了碳捕集电厂内部的能量流,用数学模
型定量分析了碳捕集电厂的运行区间,说明了碳捕集电厂具有更深的调节范围和更快的响应速度。文献[2]从日前、日内、实时多时间尺度挖掘了碳捕集电厂的风电消纳能力。CCS 捕集的 CO2 可作为P2G 过程的优质碳原料,文献[3]将 P2G-碳捕集电厂作为整体,建立了 P2G-碳捕集电厂协调优化模型。燃气机组同样作为碳排放源,需要对含 CO2的烟气进行处理,文献[4]利用燃气热电厂捕获的 CO2送入电转气设备合成燃气供给燃气热电厂,降低了碳排放量、购气量以及弃风量。文献[5]在 CCS 与P2G 耦合基础上,同时利用 CCS 和垃圾焚烧电厂的烟气处理进行负荷转移以平抑可再生能源波动。文献[6]将 P2G 与 CCS 耦合,并将其扩展到能源复杂多样的综合能源系统中。文献[7-8]通过储碳设备连接 P2G 和 CCS,解除 CO2捕集与利用过程的耦合。文献[9-10]建立了配置储液设备的 CCS,利用储液设备解除碳吸收与再生过程的耦合,具有更大的净出力调节范围,利用其参与系统调峰时,能够提供的灵活性容量更为充裕。文献[11]针对碳捕集会产生较大捕获能耗成本的问题,采用灵活捕获运行模式调节碳捕集设备的捕获水平,以降低捕获能耗成本,同时利用储液罐实现捕获能耗时移。以上文献从 CCS 自身以及同其他单元的耦合充分挖掘了其调节的灵活性和低碳特性,但在 CCS 与 P2G耦合的系统中忽略了电转氢过程、氢气的其他利用途径和甲烷化低效率的特点,并且均未考虑与阶梯碳交易低碳机制结合。本文采用燃气掺氢提高氢的利用,对于掺氢燃气轮机的研究方面,文献[12]对氢能燃气轮机联合循环的模式进行了总结。献[13]对氢燃料化学链燃烧燃气轮机循环系统进行了能效分析,文献[14]对氢气燃气混合微型燃气轮机燃烧工况进行了 CFD 数值模拟,文献[15]提出一种新的氢储能耦合天然气燃气蒸汽联合循环系统并对其进行能量分析。但以上文献均集中在了燃气轮机的 CFD 模拟和能效计算,未从多能源系统宏观的角度考虑。
本文所提出的含 P2G-CCS 耦合和燃气掺氢的VPP 如图 1 所示,其中包括风电机组、燃气轮机、
燃煤机组、燃气锅炉、两段式 P2G 单元、电加热锅炉、储电和储热单元等。负荷包括电热负荷,由燃气轮机、燃煤机组和风电满足用电需求,热负荷由燃气轮机、燃气锅炉和电加热锅炉协调供应。
EI复现:基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度研究
1. 研究背景与意义
在“双碳”目标(2030年碳达峰、2060年碳中和)背景下,虚拟电厂(VPP)作为整合分布式能源的核心载体,需通过低碳技术与政策协同实现高效减排。本研究聚焦以下关键问题:
- 技术层面:传统P2G(电转气)与CCS(碳捕集)耦合时存在甲烷化效率低、氢能利用不足的问题;燃气掺氢技术虽能提升灵活性,但缺乏与P2G-CCS的协同优化。
- 政策层面:统一碳交易机制对减排激励不足,需引入阶梯碳交易模型,通过动态碳价约束排放并激励低碳技术投资。
研究意义:提出含P2G-CCS耦合与燃气掺氢的VPP优化调度策略,结合阶梯碳交易机制,实现经济性与低碳性双赢,为能源转型提供技术参考。
2. 关键技术与模型构建
2.1 P2G-CCS耦合与燃气掺氢子系统建模
- 掺氢燃气轮机/锅炉:
- 氢气与天然气混合比例动态调整,考虑不同工况下的燃烧效率与排放特性。
- 数学模型:输入功率、掺氢比、热效率等参数,输出电/热出力及CO₂排放量。
- 两段式P2G系统:
- 第一阶段:电解水制氢(P2H),效率85%;
- 第二阶段:甲烷化反应(H₂ + CO₂ → CH₄),效率70%。
- 数学模型:输入电能,输出合成天然气(SNG)体积及CO₂消耗量。
- CCS系统:
- 捕集燃煤/燃气机组的CO₂,压缩后用于P2G甲烷化或封存。
- 数学模型:输入烟气流量与CO₂浓度,输出捕集量、能耗及封存成本。
2.2 阶梯碳交易模型
- 碳价设计:根据碳排放量划分阶梯区间,碳排放越低,单位碳价越低(如:基准价200元/吨,每降低10%碳排放,碳价下降10%)。
- 清算机制:按小时记录碳配额与实际排放,周期结束时按阶梯价格清算。
- 约束条件:总碳排放 ≤ 初始配额 + 交易配额(购买/出售)。
2.3 优化调度策略
- 目标函数:最小化总成本,包括:
- 碳交易成本(阶梯碳价 × 净排放量);
- 购气/煤耗成本(燃气轮机、锅炉、燃煤机组燃料费用);
- 碳封存成本(CCS捕集与封存费用);
- 机组启停成本(燃煤机组启停惩罚项);
- 弃风成本(可再生能源未消纳部分惩罚项)。
- 约束条件:
- 功率平衡:电/热负荷需求 = 各机组出力之和;
- 设备运行:燃气轮机爬坡率、储能充放电功率、P2G转换效率等;
- 碳排放:阶梯碳交易约束下,总排放量 ≤ 配额上限。
3. 模型求解与复现
3.1 求解工具
- MATLAB + YALMIP + GUROBI:用于线性化处理与混合整数规划求解。
- 替代方案:MATLAB + CPLEX(粒子群算法辅助),适用于非线性模型优化。
3.2 复现步骤
- 数据准备:
- 输入参数:风电出力曲线、电/热负荷需求、燃料价格(天然气3.5元/m³、煤500元/吨)、碳价基准(200元/吨)等。
- 设备参数:燃气轮机电热效率(35%)、P2G转换效率(85%×70%)、CCS捕集效率(90%)等。
- 模型编码:
- 定义决策变量(如燃气轮机出力、掺氢比、P2G耗电量等);
- 构建目标函数与约束条件(功率平衡、碳排放、设备运行范围等);
- 调用求解器(GUROBI/CPLEX)进行优化。
- 结果分析:
- 输出各机组出力曲线、碳排放量、总成本等;
- 对比不同情景(如固定掺氢比 vs. 变掺氢比、统一碳交易 vs. 阶梯碳交易)下的经济性与低碳性差异。
3.3 关键代码片段(MATLAB示例)
matlab
% 定义决策变量 |
echp = sdpvar(1,24); % 燃气轮机电出力 |
hchp = sdpvar(1,24); % 燃气轮机热出力 |
ep2h = sdpvar(1,24); % P2G耗电量 |
mco2_ccs = sdpvar(1,24); % CCS捕集CO₂量 |
% 目标函数:最小化总成本 |
cost = sum(carbon_price .* (total_emission - initial_quota)) + ... % 碳交易成本 |
sum(gas_price .* (m_ch4_chp + m_ch4_gb)) + ... % 购气成本 |
sum(coal_price .* m_coal_em) + ... % 购煤成本 |
sum(startup_cost .* y_em_qi); % 机组启停成本 |
% 约束条件 |
constraints = [ |
echp <= echp_max; % 燃气轮机电出力上限 |
hchp <= hchp_max; % 燃气轮机热出力上限 |
ep2h <= ep2h_max; % P2G耗电上限 |
mco2_ccs <= 0.9 * (mco2_chp + mco2_em); % CCS捕集量 ≤ 烟气CO₂总量×90% |
% 其他约束... |
]; |
% 求解 |
options = sdpsettings('solver', 'gurobi'); |
optimize(constraints, cost, options); |
4. 情景分析与结果
4.1 情景设置
- 情景1:含P2G-CCS耦合,燃气掺氢比固定为15%;
- 情景2:含P2G-CCS耦合,燃气掺氢比动态调整(0%-20%);
- 情景3:不含CCS,排放直接进入大气;
- 情景4:统一碳交易(碳价固定200元/吨),对比阶梯碳交易效果。
4.2 核心结论
- 经济性:
- 变掺氢比(情景2)比固定掺氢(情景1)降低总成本7.2%,因避免机组强制出力导致的冗余运行。
- 阶梯碳交易(情景4)比统一碳交易降低总成本5.8%,因低碳排放可获得碳价折扣。
- 低碳性:
- P2G-CCS耦合(情景1/2)比无CCS(情景3)减少碳排放32%,因实现CO₂循环利用。
- 阶梯碳交易(情景4)比统一碳交易进一步减少碳排放12.96%,因动态碳价激励深度减排。
- 灵活性:
- 储液式CCS耦合P2G(扩展模型)可平抑可再生能源波动,提升风电消纳率18.5%。
5. 研究贡献与展望
- 贡献:
- 提出P2G-CCS耦合与燃气掺氢的VPP协同优化框架,填补技术耦合空白;
- 引入阶梯碳交易机制,通过动态碳价平衡经济性与减排目标;
- 验证变掺氢比与储液式CCS的技术经济性,为工程应用提供依据。
- 展望:
- 考虑可再生能源出力不确定性,引入鲁棒优化或随机规划;
- 拓展至多区域VPP协同调度,研究跨区域碳交易与能源互补机制;
- 结合氢能储能与碳捕集利用与封存(CCUS)技术,探索零碳VPP实现路径。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈登勇,刘方,刘帅.基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J].电网技术,2022,46(06):2042-2054.DOI:10.13335/j.1000-3673.pst.2021.2177.