大数据毕业设计推荐:基于Hadoop+Spark的小儿阑尾炎可视化分析系统详解

💖💖作者:计算机编程小央姐
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持! 💜💜

💕💕文末获取源码

基于Hadoop+Spark的小儿阑尾炎可视化分析系统详解-系统功能介绍

基于大数据的小儿阑尾炎数据可视化分析系统是一个专门针对小儿阑尾炎医疗数据进行深度挖掘和可视化展示的综合性分析平台。该系统采用Hadoop+Spark大数据处理框架作为核心技术架构,能够高效处理海量的小儿阑尾炎患者临床数据,包括患者基本信息、实验室检查指标、临床症状、影像学检查结果以及治疗方案等多维度数据。系统通过Spark SQL和Pandas进行数据清洗、转换和分析处理,运用NumPy进行数值计算,并结合Vue+ElementUI+Echarts技术栈构建直观的数据可视化界面。系统实现了患者群体特征分析、阑尾炎诊断影响因素挖掘、疾病严重程度关联分析以及临床治疗方案决策支持等核心功能模块,为医疗工作者提供了科学的数据分析工具,同时也为计算机专业学生展示了大数据技术在医疗健康领域的实际应用价值。

基于Hadoop+Spark的小儿阑尾炎可视化分析系统详解-系统技术介绍

大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
开发语言:Python+Java(两个版本都支持)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy
数据库:MySQL

基于Hadoop+Spark的小儿阑尾炎可视化分析系统详解-系统背景意义

小儿阑尾炎作为儿科急腹症中最常见的疾病之一,其诊断和治疗一直是临床医学关注的重点问题。由于儿童生理结构特殊、病史描述能力有限、临床表现不典型等因素,小儿阑尾炎的早期诊断存在较大挑战,容易出现误诊、漏诊或延误治疗的情况。传统的诊断方式主要依靠医生的临床经验和少量检查指标的主观判断,缺乏系统性的数据支撑和科学的分析方法。随着医院信息化建设的不断完善,大量的患者临床数据得以电子化存储,这些数据蕴含着丰富的医学规律和诊疗信息,但由于数据量庞大、维度复杂,传统的数据处理方法难以有效挖掘其中的价值。因此,运用大数据技术对小儿阑尾炎的诊疗数据进行深度分析,寻找疾病发展规律和影响因素,已成为提高诊断准确率和治疗效果的重要途径。
本课题的研究具有重要的理论价值和实践意义。从技术角度来看,该系统为大数据技术在医疗健康领域的应用提供了具体的实践案例,展示了Hadoop+Spark框架在处理医疗大数据方面的可行性和有效性,有助于推动大数据技术与传统医学的深度融合。从医疗实践角度,系统通过对大量小儿阑尾炎患者数据的统计分析和可视化展示,能够为临床医生提供更加客观、全面的诊断参考依据,帮助医生更好地理解疾病的发展规律和关键影响因素,在一定程度上辅助临床决策。对于医院管理而言,该系统可以为医疗质量评估、资源配置优化等方面提供数据支持。从教学研究的角度,系统整合了多个维度的医疗数据分析功能,为相关专业学生和研究人员提供了良好的学习和研究平台,有助于培养复合型的医疗信息化人才。虽然作为毕业设计项目,其规模和影响相对有限,但仍能在小范围内验证大数据分析在医疗领域应用的可能性。

基于Hadoop+Spark的小儿阑尾炎可视化分析系统详解-系统演示视频

基于大数据的小儿阑尾炎数据可视化分析系统

基于Hadoop+Spark的小儿阑尾炎可视化分析系统详解-系统演示图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基于Hadoop+Spark的小儿阑尾炎可视化分析系统详解-系统部分代码

from pyspark.sql import SparkSession

from pyspark.sql.functions import col, count, avg, sum, when, desc, asc

from pyspark.sql.types import *

import pandas as pd

import numpy as np

from django.http import JsonResponse

from django.views.decorators.http import require_http_methods

spark = SparkSession.builder.appName("PediatricAppendicitisAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()

@require_http_methods(["GET"])

def analyze_patient_characteristics(request):

    df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/appendicitis_data/app_data.csv")

    age_distribution = df.groupBy("Age").agg(count("*").alias("patient_count")).orderBy("Age")

    age_stats = df.agg(avg("Age").alias("avg_age"), min("Age").alias("min_age"), max("Age").alias("max_age"))

    age_ranges = df.select(

        when((col("Age") >= 0) & (col("Age") <= 3), "婴幼儿期").

        when((col("Age") >= 4) & (col("Age") <= 6), "学龄前期").

        when((col("Age") >= 7) & (col("Age") <= 12), "学龄期").

        when((col("Age") >= 13) & (col("Age") <= 18), "青春期").

        otherwise("其他").alias("age_group")

    ).groupBy("age_group").agg(count("*").alias("count")).orderBy(desc("count"))

    gender_distribution = df.groupBy("Sex").agg(count("*").alias("patient_count"))

    gender_percentage = gender_distribution.withColumn("percentage", 

        col("patient_count") * 100.0 / df.count())

    bmi_stats = df.agg(avg("BMI").alias("avg_bmi"), min("BMI").alias("min_bmi"), max("BMI").alias("max_bmi"))

    bmi_categories = df.select(

        when(col("BMI") < 18.5, "偏瘦").

        when((col("BMI") >= 18.5) & (col("BMI") < 24), "正常").

        when((col("BMI") >= 24) & (col("BMI") < 28), "超重").

        when(col("BMI") >= 28, "肥胖").

        otherwise("未知").alias("bmi_category")

    ).groupBy("bmi_category").agg(count("*").alias("count"))

    alvarado_stats = df.agg(avg("Alvarado_Score").alias("avg_alvarado"), min("Alvarado_Score").alias("min_alvarado"), max("Alvarado_Score").alias("max_alvarado"))

    pediatric_score_stats = df.agg(avg("Paedriatic_Appendicitis_Score").alias("avg_pediatric"), min("Paedriatic_Appendicitis_Score").alias("min_pediatric"), max("Paedriatic_Appendicitis_Score").alias("max_pediatric"))

    diagnosis_distribution = df.groupBy("Diagnosis").agg(count("*").alias("count")).withColumn("percentage", col("count") * 100.0 / df.count())

    management_distribution = df.groupBy("Management").agg(count("*").alias("count")).withColumn("percentage", col("count") * 100.0 / df.count())

    severity_distribution = df.groupBy("Severity").agg(count("*").alias("count")).withColumn("percentage", col("count") * 100.0 / df.count())

    result_data = {

        "age_distribution": age_distribution.collect(),

        "age_ranges": age_ranges.collect(),

        "gender_distribution": gender_percentage.collect(),

        "bmi_categories": bmi_categories.collect(),

        "diagnosis_stats": diagnosis_distribution.collect(),

        "management_stats": management_distribution.collect(),

        "severity_stats": severity_distribution.collect(),

        "summary_stats": {

            "age_stats": age_stats.collect()[0].asDict(),

            "bmi_stats": bmi_stats.collect()[0].asDict(),

            "alvarado_stats": alvarado_stats.collect()[0].asDict(),

            "pediatric_stats": pediatric_score_stats.collect()[0].asDict()

        }

    }

    return JsonResponse({"status": "success", "data": result_data})

@require_http_methods(["GET"])

def analyze_diagnosis_factors(request):

    df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/appendicitis_data/app_data.csv")

    appendicitis_cases = df.filter(col("Diagnosis") == "appendicitis")

    non_appendicitis_cases = df.filter(col("Diagnosis") != "appendicitis")

    lab_comparison = df.groupBy("Diagnosis").agg(

        avg("WBC_Count").alias("avg_wbc"),

        avg("CRP").alias("avg_crp"),

        avg("Neutrophil_Percentage").alias("avg_neutrophil")

    )

    symptom_analysis = df.groupBy("Diagnosis").agg(

        sum(when(col("Migratory_Pain") == 1, 1).otherwise(0)).alias("migratory_pain_count"),

        sum(when(col("Nausea") == 1, 1).otherwise(0)).alias("nausea_count"),

        sum(when(col("Loss_of_Appetite") == 1, 1).otherwise(0)).alias("appetite_loss_count"),

        count("*").alias("total_count")

    )

    symptom_percentage = symptom_analysis.withColumn("migratory_pain_rate", 

        col("migratory_pain_count") * 100.0 / col("total_count")).withColumn("nausea_rate", 

        col("nausea_count") * 100.0 / col("total_count")).withColumn("appetite_loss_rate", 

        col("appetite_loss_count") * 100.0 / col("total_count"))

    temperature_comparison = df.groupBy("Diagnosis").agg(

        avg("Body_Temperature").alias("avg_temperature"),

        sum(when(col("Body_Temperature") > 37.5, 1).otherwise(0)).alias("fever_count"),

        count("*").alias("total_count")

    ).withColumn("fever_rate", col("fever_count") * 100.0 / col("total_count"))

    score_comparison = df.groupBy("Diagnosis").agg(

        avg("Alvarado_Score").alias("avg_alvarado"),

        avg("Paedriatic_Appendicitis_Score").alias("avg_pediatric_score")

    )

    age_diagnosis_analysis = df.select(

        when((col("Age") >= 0) & (col("Age") <= 3), "婴幼儿期").

        when((col("Age") >= 4) & (col("Age") <= 6), "学龄前期").

        when((col("Age") >= 7) & (col("Age") <= 12), "学龄期").

        when((col("Age") >= 13) & (col("Age") <= 18), "青春期").

        otherwise("其他").alias("age_group"),

        col("Diagnosis")

    ).groupBy("age_group", "Diagnosis").agg(count("*").alias("count"))

    age_diagnosis_rate = age_diagnosis_analysis.filter(col("Diagnosis") == "appendicitis").join(

        df.select(

            when((col("Age") >= 0) & (col("Age") <= 3), "婴幼儿期").

            when((col("Age") >= 4) & (col("Age") <= 6), "学龄前期").

            when((col("Age") >= 7) & (col("Age") <= 12), "学龄期").

            when((col("Age") >= 13) & (col("Age") <= 18), "青春期").

            otherwise("其他").alias("age_group")

        ).groupBy("age_group").agg(count("*").alias("total_count")), "age_group"

    ).withColumn("diagnosis_rate", col("count") * 100.0 / col("total_count"))

    correlation_data = df.select("WBC_Count", "CRP", "Neutrophil_Percentage", "Body_Temperature", "Alvarado_Score", "Paedriatic_Appendicitis_Score").toPandas()

    correlation_matrix = correlation_data.corr().to_dict()

    result_data = {

        "lab_comparison": lab_comparison.collect(),

        "symptom_analysis": symptom_percentage.collect(),

        "temperature_analysis": temperature_comparison.collect(),

        "score_comparison": score_comparison.collect(),

        "age_diagnosis_rate": age_diagnosis_rate.collect(),

        "correlation_matrix": correlation_matrix

    }

    return JsonResponse({"status": "success", "data": result_data})

@require_http_methods(["GET"])

def analyze_severity_factors(request):

    df = spark.read.option("header", "true").option("inferSchema", "true").csv("hdfs://localhost:9000/appendicitis_data/app_data.csv")

    appendicitis_df = df.filter(col("Diagnosis") == "appendicitis")

    complicated_cases = appendicitis_df.filter(col("Severity") == "complicated")

    uncomplicated_cases = appendicitis_df.filter(col("Severity") == "uncomplicated")

    lab_severity_analysis = appendicitis_df.groupBy("Severity").agg(

        avg("WBC_Count").alias("avg_wbc"),

        avg("CRP").alias("avg_crp"),

        avg("Neutrophil_Percentage").alias("avg_neutrophil"),

        count("*").alias("case_count")

    )

    diameter_severity_analysis = appendicitis_df.groupBy("Severity").agg(

        avg("Appendix_Diameter").alias("avg_diameter"),

        min("Appendix_Diameter").alias("min_diameter"),

        max("Appendix_Diameter").alias("max_diameter")

    )

    diameter_threshold_analysis = appendicitis_df.select("Severity",

        when(col("Appendix_Diameter") > 6.0, "增粗明显").

        when((col("Appendix_Diameter") > 4.0) & (col("Appendix_Diameter") <= 6.0), "轻度增粗").

        otherwise("正常范围").alias("diameter_category")

    ).groupBy("Severity", "diameter_category").agg(count("*").alias("count"))

    peritonitis_severity_analysis = appendicitis_df.groupBy("Severity").agg(

        sum(when(col("Peritonitis") == 1, 1).otherwise(0)).alias("peritonitis_count"),

        count("*").alias("total_count")

    ).withColumn("peritonitis_rate", col("peritonitis_count") * 100.0 / col("total_count"))

    stay_duration_analysis = appendicitis_df.groupBy("Severity").agg(

        avg("Length_of_Stay").alias("avg_stay_days"),

        min("Length_of_Stay").alias("min_stay"),

        max("Length_of_Stay").alias("max_stay")

    )

    stay_duration_categories = appendicitis_df.select("Severity",

        when(col("Length_of_Stay") <= 3, "短期住院").

        when((col("Length_of_Stay") > 3) & (col("Length_of_Stay") <= 7), "中期住院").

        when(col("Length_of_Stay") > 7, "长期住院").

        otherwise("未知").alias("stay_category")

    ).groupBy("Severity", "stay_category").agg(count("*").alias("count"))

    severity_distribution = appendicitis_df.groupBy("Severity").agg(count("*").alias("count")).withColumn("percentage", col("count") * 100.0 / appendicitis_df.count())

    risk_factor_analysis = appendicitis_df.select(

        col("Severity"),

        when((col("WBC_Count") > 15000) & (col("CRP") > 50) & (col("Appendix_Diameter") > 6), "高风险").

        when((col("WBC_Count") > 12000) | (col("CRP") > 30) | (col("Appendix_Diameter") > 4), "中风险").

        otherwise("低风险").alias("risk_level")

    ).groupBy("Severity", "risk_level").agg(count("*").alias("count"))

    pandas_df = appendicitis_df.select("WBC_Count", "CRP", "Appendix_Diameter", "Length_of_Stay").toPandas()

    severity_correlation = pandas_df.corr().to_dict()

    result_data = {

        "lab_severity_stats": lab_severity_analysis.collect(),

        "diameter_analysis": diameter_severity_analysis.collect(),

        "diameter_categories": diameter_threshold_analysis.collect(),

        "peritonitis_analysis": peritonitis_severity_analysis.collect(),

        "stay_duration_stats": stay_duration_analysis.collect(),

        "stay_categories": stay_duration_categories.collect(),

        "severity_distribution": severity_distribution.collect(),

        "risk_factors": risk_factor_analysis.collect(),

        "correlation_data": severity_correlation

    }

    return JsonResponse({"status": "success", "data": result_data})

基于Hadoop+Spark的小儿阑尾炎可视化分析系统详解-结语

💟💟如果大家有任何疑虑,欢迎在下方位置详细交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值