思路:因为某个数变成另一个数是单向的,并且一个数变成另一个数后还可以变,让我联想到图论的内容,一个数变成其他数就相当于这个数与另一个数有单向边,而且边之间的线路可以让一个数可能变成很多数,因为数据量很小,我就想到了floyd,就是我们用floyd做传递闭包,得出一个数可以变成哪些数,然后将每个位看一遍,乘起来就是答案,不过这里有个小坑,答案超过了2的64次方,所以还要高精度算法处理一下。
代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll k,i,j,u,v,z,x,ans[105];
vector<vector<ll>>a(15,vector<ll>(15));//建图
vector<ll>b(15,1);//看0-9分别能变多少种(包括自己)
string s;
void f1(ll x){//高精度乘法
ll c[105],i,j;
fill(c,c+105,0);
for(i=0;i<=100;i++){
c[i]+=ans[i]*x;
c[i+1]+=c[i]/10;
c[i]%=10;
}
memcpy(ans,c,sizeof(ans));
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cin>>s>>k;
for(i=1;i<=k;i++){
cin>>u>>v;
a[u][v]=1;
}
for(z=0;z<=9;z++){//传递闭包,floyd算法
for(i=0;i<=9;i++){
for(j=0;j<=9;j++){
a[i][j]=a[i][j]|(a[i][z]&a[z][j]);
}
}
}
for(i=0;i<=9;i++){
for(j=0;j<=9;j++){
if(i==j){//因为b数组初始为1,已经算了,遇到自己就跳过
continue;
}
if(a[i][j]==1){
b[i]++;
}
}
}
ans[0]=1;
for(char c:s){
ll x=c-'0';
f1(b[x]);
}
for(i=100;i>=0;i--){
if(ans[i]!=0){
break;
}
}
for(;i>=0;i--){
cout<<ans[i];
}
return 0;
}