算法:floyd和高精度 洛谷 最短路 P1037 [NOIP 2002 普及组] 产生数

思路:因为某个数变成另一个数是单向的,并且一个数变成另一个数后还可以变,让我联想到图论的内容,一个数变成其他数就相当于这个数与另一个数有单向边,而且边之间的线路可以让一个数可能变成很多数,因为数据量很小,我就想到了floyd,就是我们用floyd做传递闭包,得出一个数可以变成哪些数,然后将每个位看一遍,乘起来就是答案,不过这里有个小坑,答案超过了2的64次方,所以还要高精度算法处理一下。

代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll k,i,j,u,v,z,x,ans[105];
vector<vector<ll>>a(15,vector<ll>(15));//建图
vector<ll>b(15,1);//看0-9分别能变多少种(包括自己)
string s;
void f1(ll x){//高精度乘法
    ll c[105],i,j;
    fill(c,c+105,0);
    for(i=0;i<=100;i++){
        c[i]+=ans[i]*x;
        c[i+1]+=c[i]/10;
        c[i]%=10;
    }
    memcpy(ans,c,sizeof(ans));
}
int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    cin>>s>>k;
    for(i=1;i<=k;i++){
        cin>>u>>v;
        a[u][v]=1;
    }
    for(z=0;z<=9;z++){//传递闭包,floyd算法
        for(i=0;i<=9;i++){
            for(j=0;j<=9;j++){
                a[i][j]=a[i][j]|(a[i][z]&a[z][j]);
            }
        }
    }
    for(i=0;i<=9;i++){
        for(j=0;j<=9;j++){
            if(i==j){//因为b数组初始为1,已经算了,遇到自己就跳过
                continue;
            }
            if(a[i][j]==1){
                b[i]++;
            }
        }
    }
    ans[0]=1;
    for(char c:s){
        ll x=c-'0';
        f1(b[x]);
    }
    for(i=100;i>=0;i--){
        if(ans[i]!=0){
            break;
        }
    }
    for(;i>=0;i--){
        cout<<ans[i];
    }        
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值