从BERT到GPT:预训练模型如何提升AI原生应用的对话状态跟踪
关键词:对话状态跟踪(DST)、预训练模型、BERT、GPT、自然语言处理(NLP)、AI原生应用、多轮对话系统
摘要:在智能客服、语音助手等AI原生应用中,"听懂用户需求"是核心能力。本文将从"对话状态跟踪(DST)"这一关键技术出发,结合BERT和GPT两大预训练模型的进化,用"餐厅点单"的生活化比喻,逐步拆解预训练模型如何让AI更精准地理解多轮对话中的用户意图。我们将覆盖DST的核心逻辑、BERT与GPT的技术差异、实战代码示例,以及未来AI对话系统的进化方向。
背景介绍:为什么AI需要"记住对话状态"?
目的和范围
想象你在餐厅点单:第一句说"我要一份炒饭",第二句补充"加辣",第三句问"能换成牛肉吗?“。服务员需要在脑海中维护一个"点单状态”——从"炒饭(默认)“→"炒饭+辣"→"牛肉炒饭+辣”。
AI原生应用(如智能助手、车载语音系统)面临类似挑战:用户通过多轮对话逐步表达需求(“订酒店→北京→下周末→预算500”),系统需要实时跟踪这些"状态变量"(地点、时间、预算),才能给出正确反馈。本文将聚焦"对话状态跟踪(DST)"技术,解释BERT和GPT如何让AI更聪明地完成这一任务。
预期读者
- 对自然语言处理(NLP)感兴趣的开发者/学生
- 想了解AI对