AI与MCP:解码智能系统的“上下文对话”逻辑
关键词
AI上下文管理、MCP模型、交互协议、智能系统架构、上下文推理、状态保持、动态适应
摘要
当我们和人类对话时,会自然记住之前说过的话——比如你问“明天要带伞吗?”,对方回答“要,因为下雨”,接着你问“那后天呢?”,对方会立刻明白“后天”是相对于“明天”的时间延续。但早期AI系统却像“鱼的记忆”,每一次对话都是独立的,无法理解这种“上下文关联”。
MCP(Model-Context-Protocol,模型-上下文-协议)模型应运而生,它像一套“智能对话规则”,让AI系统学会“记住”和“运用”上下文,实现更自然、连贯的交互。本文将从生活化比喻、技术原理、代码实现到实际案例,一步步拆解AI与MCP的交互逻辑,帮你理解如何让AI从“机械回答”进化为“有逻辑的对话者”。
一、背景:为什么AI需要“上下文协议”?
1.1 AI的“对话痛点”:没有“记忆”的机械回答
假设你用智能助手订机票:
- 你:“帮我订明天去上海的机票。”
- 助手:“好的,明天有10:00和14:00的航班,选哪个?”
- 你:“10点的吧,顺便帮我订酒店。”
- 助手:“请问你要订哪一天的酒店?”