AI幻觉缓解:模型微调vs.推理优化的对比
关键词:AI幻觉、模型微调、推理优化、生成模型、事实核查、温度参数、提示工程
摘要:本文深入探讨AI生成内容中存在的"幻觉"问题,对比分析模型微调与推理优化两种主流解决方案。通过蛋糕店学徒的成长故事,揭示参数调整与生成策略的本质区别,结合Hugging Face和OpenAI API的实战案例,提供不同场景下的技术选型建议。
背景介绍
目的和范围
解析大语言模型生成错误信息的根本原因,对比两种主流解决方案的技术原理、实施成本与效果持续性。涵盖从基础概念到产业实践的全链路分析。
预期读者
AI工程师、算法研究员、技术产品经理,以及对生成式AI感兴趣的技术决策者。
术语表
核心术语定义
- AI幻觉:模型生成与事实不符但看似合理的内容,如虚构历史事件
- 模型微调:通过继续训练调整模型参数(如LoRA)
- 推理优化:在生成过程中调整采样策略(温度/Top-p)
相关概念
- 温度参数