一文看透:AI提示设计市场潜力大揭秘,提示工程架构师的机遇与挑战
一、引言:为什么“让AI听懂你”成了一门值钱的生意?
你有没有过这样的经历?
想让AI写一篇美妆产品的小红书笔记,结果它输出的内容像说明书一样生硬;
想让AI帮你优化客户投诉回复,它却写出了“我们深表歉意但无法解决”的套话;
想让AI生成技术文档的摘要,它要么漏掉关键信息,要么把“API调用”写成“接口使用”的大白话——
明明你“说清楚了”,AI却“没听懂”。问题出在哪儿?
答案藏在**“提示设计”(Prompt Design)**里——它不是简单的“给AI发指令”,而是一门“用人类语言翻译业务需求,让AI输出符合预期结果”的技术。
1. 为什么提示设计突然火了?
2023年以来,生成式AI(如GPT-4、Claude 3、文心一言)的普及,让“AI赋能业务”从口号变成了现实。但很多企业发现:买了大模型 License,却用不好——
- 客服AI答非所问,反而增加用户投诉;
- 营销AI生成的文案转化率不到2%,不如人工写的;
- 研发AI生成的代码全是“八股文”,还要工程师重新改;
本质原因是:大模型的“能力边界”需要“提示设计”来激活。就像你买了一辆跑车,却不会换挡——不是车不好,是“驾驶技术”不行。
2. 这篇文章能给你什么?
我会用3个核心问题帮你看透这个赛道:
- 市场潜力:提示设计为什么能成为“AI时代的新基建”?
- 岗位能力:提示工程架构师到底要会什么?
- 机遇挑战:这个岗位是“昙花一现”还是“长期红利”?
读完这篇文章,你会明白:未来10年,“懂AI怎么想”的人,会比“懂AI怎么造”的人更稀缺。
二、基础知识:先搞懂“提示设计”和“提示工程”的区别
在聊市场之前,先澄清两个容易混淆的概念——这是理解整个赛道的基础。
1. 什么是“提示设计(Prompt Design)”?
提示设计是“针对具体场景,构造能让AI输出符合预期结果的指令”。
比如:
- 坏提示:“写一篇关于咖啡的文章”(模糊,AI可能写历史、种类、做法,完全不确定);
- 好提示:“你是一位精品咖啡馆的老板,目标用户是25-35岁的都市白领。请写一篇150字的朋友圈文案,强调‘手冲咖啡的仪式感’(比如‘磨豆时的香气漫过指尖’)、‘独处的治愈感’(比如‘周末的上午,用一杯手冲和自己对话’),最后加一句‘来店里,我给你冲一杯专属的曼特宁’。”
好的提示有3个特征:明确角色、具体需求、约束条件——把“模糊的人类意图”翻译成“AI能理解的结构化指令”。
2. 什么是“提示工程(Prompt Engineering)”?
提示工程是“系统级的提示设计方法论”——它不仅要写单个提示,还要解决“如何让AI在复杂场景下持续输出高质量结果”的问题。
比如,为企业设计一个智能客服的提示系统,需要考虑:
- 多轮对话的上下文管理(比如用户说“我昨天投诉了订单延迟”,AI要记得之前的对话内容);
- 用户意图的识别(比如用户说“快递还没到”,AI要判断是“查询物流”还是“申请退款”);
- 错误回复的纠正机制(比如AI说错了政策,要能自动调整提示重新生成);
- 输出的合规性(比如不能泄露用户隐私,不能说敏感词)。
简单来说:提示设计是“写一条好指令”,提示工程是“搭建一套能持续输出好结果的提示系统”。
3. 提示工程的发展背景:从“试错”到“专业”
2020年GPT-3发布时,大家用AI的方式是“瞎试”——比如输入“写一首关于爱情的诗”,不行就改“写一首悲伤的爱情诗”,再不行就改“写一首用‘雨’和‘信件’意象的悲伤爱情诗”。
2023年GPT-4发布后,企业开始意识到:靠“试错”用不好AI——必须有专业的方法论,把“个人经验”变成“可复制的系统”。
于是,“提示工程”从“爱好者的小技巧”变成了“企业的核心能力”,“提示工程架构师”也从“冷门岗位”变成了“抢着要的香饽饽”。
三、核心洞察:AI提示设计的市场潜力到底有多大?
要判断一个赛道的潜力,看3个维度:需求规模、付费意愿、增长速度。我们逐一拆解。
1. 需求规模:所有用AI的企业,都需要提示设计
根据Gartner 2024年的报告:到2025年,60%的企业将使用生成式AI,其中30%的企业将依赖专业的提示设计服务。
为什么?因为企业用AI的核心诉求是“降本增效”——而提示设计是“把AI能力转化为业务结果”的关键。
举几个真实场景:
场景1:企业服务——从“通用AI”到“定制AI”
某零售企业用GPT-4做客服,但初期转化率只有1.8%——因为AI回复的是“标准话术”,没有针对性。后来找提示工程团队做了3件事:
- 给AI“贴标签”:“你是XX品牌的专属客服,熟悉我们的会员体系(比如‘钻石会员享免费退换’)、产品特点(比如‘羽绒服的充绒量是90%白鸭绒’);
- 加入“用户分层”:如果用户是“新客”,强调“首单8折”;如果是“老客”,强调“积分兑换”;
- 设计“共情模板”:当用户投诉“快递延迟”时,AI会先回复“我完全理解你等快递的着急——我自己上周买的口红晚了3天,也特别生气”,再给出解决方案。
结果:客服转化率提升到7.2%,每月节省人工成本20万元。
结论:企业愿意为“能解决具体业务问题的提示设计”付费——因为 ROI 看得见。
场景2:开发者生态——Prompt 成了“数字商品”
在海外,Prompt 已经变成了一种“可交易的数字商品”。比如平台PromptBase上,用户可以买卖各种场景的Prompt:
- 一个“生成MidJourney科幻插画”的Prompt,售价5美元,销量超过10万次,收入50万美元;
- 一个“优化LinkedIn简历”的Prompt,售价3美元,帮用户把简历回复率从10%提升到35%;
- 一个“写Python测试用例”的Prompt,售价10美元,让开发者节省50%的测试时间。
国内也有类似平台,比如小猿Prompt、PromptHub——开发者可以把自己的“提示技巧”变成收入来源。
结论:C端用户愿意为“能提升效率的优质Prompt”付费——因为“时间比钱贵”。
场景3:垂直领域——专业Prompt的“溢价空间”
在医疗、法律、金融这些“高门槛领域”,Prompt的价值更高。比如:
- 医疗:某AI辅助诊断系统,用“专业Prompt”让AI分析胸部CT影像——Prompt里要包含“结节的大小(>8mm需要关注)、位置(肺上叶更危险)、形态(毛刺状提示恶性)”等医学术语,结果诊断准确率从85%提升到92%;
- 法律:某律师事务所用“Prompt”让AI生成合同草稿——Prompt里要包含“合同法第52条(无效合同的情形)、民法典关于‘格式条款’的规定”,结果合同起草时间从3天缩短到4小时;
- 金融:某银行用“Prompt”让AI分析客户的信贷风险——Prompt里要包含“征信报告中的‘逾期次数’(>3次拒贷)、‘负债比’(>50%拒贷)”,结果风险识别准确率提升15%。
结论:垂直领域的Prompt需要“专业知识+AI能力”,溢价空间更大——因为“不是谁都能写”。
2. 付费意愿:企业愿意为“效果”付高价
根据艾瑞咨询2024年生成式AI调研报告:
- 68%的企业愿意为“提示设计服务”支付每年10-50万元;
- 22%的企业愿意支付每年50-100万元;
- 10%的头部企业(比如金融、医疗)愿意支付每年100万元以上。
为什么企业愿意花这么多钱?因为“提示设计的效果能直接算成钱”——比如:
- 营销Prompt提升5%的转化率,对应年销售额增加1000万元;
- 客服Prompt减少30%的人工成本,对应年节省50万元;
- 研发Prompt缩短20%的开发时间,对应年多交付2个项目。
一句话总结:提示设计的价值,是“把AI的‘能力’转化为企业的‘业绩’”——这是企业最愿意付费的部分。
3. 增长速度:未来3年,市场规模将增长10倍
根据IDC 2024年生成式AI市场预测:
- 2023年,全球提示设计市场规模约为12亿美元;
- 2026年,这个数字将达到120亿美元——3年增长10倍。
增长的驱动力来自3个方面:
- 大模型的普及:越来越多的企业开始用AI,需要提示设计来“激活”;
- 场景的深化:从“写文案、写代码”到“辅助诊断、风险分析”,复杂场景需要更专业的提示设计;
- 工具的成熟:比如Prompt优化工具(如PromptLayer)、Prompt管理平台(如LlamaIndex)的出现,降低了提示工程的门槛,让更多企业能用上。
四、关键能力:提示工程架构师到底要会什么?
现在你知道提示设计的市场潜力很大,但不是所有人都能做提示工程架构师——这个岗位需要“技术+业务+沟通”的综合能力。
我采访了5位一线提示工程架构师(来自阿里、腾讯、字节、OpenAI生态企业),总结出了5项核心能力,按重要性排序:
1. 第一项能力:懂大模型的“脾气”——大模型理解能力
提示工程的本质,是“用大模型的逻辑解决人类的问题”。你得先懂“大模型是怎么想的”,才能设计出有效的Prompt。
比如:
- GPT-4擅长生成创造性内容(如文案、故事),但对精确计算(如复杂数学题)不如Claude 3;
- Claude 3擅长长文本处理(如分析100页的合同),但对多模态生成(如文本+图像)不如Gemini;
- 开源模型(如LLaMA 3)适合定制化场景(如企业内部知识库问答),但需要“微调+Prompt”结合使用。
举个例子:如果你要设计一个“分析用户评论的Prompt”,用GPT-4的话,可以写:“请分析以下100条用户评论,总结出最常见的3个痛点,用 bullet points 列出,每个痛点配2条具体例子。” 但如果用Claude 3,你可以加一句:“请同时分析评论中的‘情绪倾向’(正面/负面/中性),并计算每个痛点的情绪占比。”——因为Claude 3更擅长长文本的多维度分析。
如何提升这项能力?
- 多测试不同模型:比如用GPT-4、Claude 3、文心一言分别生成同一段内容,对比差异;
- 读大模型的官方文档:比如OpenAI的《Prompt Engineering Guide》、Anthropic的《Claude Prompt Best Practices》;
- 关注大模型的更新日志:比如GPT-4 Turbo支持更长的上下文(128k tokens),这意味着你可以在Prompt里加入更多历史对话内容。
2. 第二项能力:把业务需求“翻译”成Prompt——场景化设计能力
提示工程架构师不是“Prompt写手”,而是“业务需求翻译官”——你得先听懂“产品经理要什么”“运营要什么”“用户要什么”,再把这些需求翻译成“AI能理解的指令”。
举个真实案例:
某教育企业的产品经理说:“我们要做一个‘AI错题本’,让AI帮学生分析错题原因,给出针对性的复习建议。” 如果你直接写Prompt:“分析这道错题的原因,给出复习建议。” 结果AI可能输出:“这道题考查的是三角函数的诱导公式,你应该复习一下sin(π-α)=sinα的知识点。” 但这样的回复太笼统,学生不会用。
正确的做法是:先拆解业务需求的“细节”——
- 目标用户:初中三年级学生;
- 核心需求:不仅要知道“错在哪儿”,还要知道“为什么会错”(比如“概念混淆”“计算失误”“审题不清”);
- 输出要求:用“学生能听懂的话”(不能用“诱导公式”这种术语,要改成“sin(180°-α)=sinα”);
- 附加需求:给出“具体的复习步骤”(比如“先做10道类似的题目,再看一遍课本第56页的例子”)。
然后设计Prompt:
“你是一位初中数学老师,正在帮初三学生分析错题。请按照以下步骤处理:
- 先看题目:[插入错题内容]
- 分析错误原因:从‘概念混淆’‘计算失误’‘审题不清’中选一个,用1句话说明(比如‘你混淆了sin(180°-α)和cos(180°-α)的公式’);
- 给出复习建议:用2句话,第一句说“要复习的知识点”(比如“翻课本第56页,重新看‘三角函数的诱导公式’部分”),第二句说“要做的练习”(比如“做练习册第23页的第1-5题,重点练sin(180°-α)的应用”);
- 语气要亲切,像老师跟学生说话(比如用“你很棒,只是这里有点小粗心~”代替“你犯了概念错误”)。”
结果:学生用这个AI错题本的留存率从30%提升到了65%——因为AI的回复“有用、易懂、亲切”。
如何提升这项能力?
- 学会“拆解需求”:问自己5个问题——目标用户是谁?核心需求是什么?输出要满足什么条件?有没有约束?语气要什么样?
- 多跟业务团队沟通:比如跟产品经理聊“用户的真实痛点”,跟运营聊“什么内容能提升转化率”;
- 做“用户测试”:写好Prompt后,找真实用户用一下,问他们“这个回复对你有帮助吗?”“哪里听不懂?”。
3. 第三项能力:让AI“更聪明”——多轮交互与上下文管理
很多复杂场景需要“多轮对话”——比如AI客服、AI导师、AI助手。这时候,提示工程架构师需要解决的问题是:让AI记住之前的对话内容,并且能根据上下文调整回复。
举个例子:
用户问:“我买的手机昨天到了,但是充电头坏了,怎么办?”
AI回复:“很抱歉给你带来麻烦~请你提供一下订单号,我帮你申请补发充电头。”
用户接着说:“订单号是123456,另外我想换个颜色,可以吗?”
这时候,AI需要记住两个信息:“充电头坏了要补发”和“想换颜色”——如果Prompt设计不好,AI可能只回复“换颜色的问题”,忘了“补发充电头”。
正确的Prompt设计需要加入上下文管理:
“你是XX品牌的客服,正在处理用户的问题。请遵循以下规则:
- 首先回顾之前的对话内容([插入之前的对话历史]);
- 先解决用户的第一个问题(充电头坏了),再解决第二个问题(换颜色);
- 每个问题的回复要明确(比如“你的订单号123456已登记,充电头会在3个工作日内补发”“换颜色需要你先寄回原手机,我们收到后会寄新颜色的手机”);
- 最后问用户“还有什么可以帮你的吗?”。”
如何提升这项能力?
- 学习“对话管理”的方法论:比如用“记忆向量”(Vector Memory)存储对话历史,让AI能快速检索;
- 使用“多轮Prompt模板”:比如先写“回顾历史对话:[历史内容]”,再写“当前用户问题:[问题]”,最后写“回复要求:[要求]”;
- 测试“上下文遗忘”问题:比如让用户连续问3个问题,看AI是否能记住所有信息。
4. 第四项能力:用数据优化Prompt——数据驱动的迭代能力
好的Prompt不是“写出来的”,而是“测出来的”。提示工程架构师需要用数据来判断Prompt的效果,并且不断迭代优化。
举个例子:
你设计了两个营销文案的Prompt:
- Prompt A:“写一篇关于XX面膜的小红书笔记,强调天然成分。”
- Prompt B:“写一篇关于XX面膜的小红书笔记,目标用户是20-28岁的女性,喜欢自然、小众的品牌。要加入使用场景(比如“熬夜赶方案后,用它急救”)、使用感受(比如“清透不黏腻,像把精华涂在脸上”)、天然成分(比如“积雪草、金缕梅,都是我认识的植物”),语气要像闺蜜分享。”
你需要用数据来判断哪个Prompt更好——比如:
- 输出质量:让运营团队给文案打分(1-5分),Prompt B的平均分是4.2,Prompt A是3.1;
- 转化率:把两个文案放到小红书上测试,Prompt B的点赞数是Prompt A的3倍,转化率是2.5倍;
- 成本:Prompt B生成的文案需要修改的地方更少,节省了50%的人工时间。
然后,你可以根据数据优化Prompt B——比如加入“用户证言”(比如“我同事用了一周,脸上的痘痘消了好多”),让效果更好。
如何提升这项能力?
- 定义“效果指标”:比如营销文案的指标是“点赞数、转化率、修改时间”;客服的指标是“解决率、用户满意度”;
- 使用“AB测试”工具:比如用OpenAI的API做AB测试,对比不同Prompt的输出效果;
- 建立“Prompt迭代日志”:记录每次修改的内容、测试结果、优化方向,形成“可复制的经验”。
5. 第五项能力:跟团队“对齐”——跨领域沟通能力
提示工程架构师不是“ lone wolf”(独狼),而是“团队的桥梁”——你需要跟产品、运营、技术、法务等团队沟通,确保Prompt符合所有要求。
比如:
- 跟产品团队沟通:明确“用户的核心需求”;
- 跟运营团队沟通:明确“什么内容能提升转化率”;
- 跟技术团队沟通:明确“Prompt的长度限制”(比如大模型的上下文窗口是8k tokens,不能超过);
- 跟法务团队沟通:明确“不能说的内容”(比如“这款产品能治愈癌症”是虚假宣传)。
举个真实案例:
某金融企业的提示工程架构师设计了一个“AI信贷顾问”的Prompt,里面写了“我们的贷款利率是行业最低的”——结果法务团队指出:“‘行业最低’是绝对化用语,违反广告法。” 于是,他把Prompt改成“我们的贷款利率比同行平均水平低10%”,既符合法务要求,又保留了卖点。
如何提升这项能力?
- 学会“用对方的语言说话”:比如跟技术团队说“Prompt的token数不要超过8k”,跟运营团队说“这个Prompt能提升3倍转化率”;
- 主动对齐需求:比如每周跟产品、运营开一次会,同步Prompt的进展和问题;
- 建立“Prompt评审机制”:让所有相关团队审核Prompt,避免遗漏关键要求。
五、进阶探讨:提示工程的“最佳实践”与“避坑指南”
1. 提示工程的5条“最佳实践”
我总结了一线提示工程架构师的经验,提炼出5条“不会错的准则”:
准则1:给AI“明确的角色”
让AI“扮演”某个专家,能大幅提升输出质量。比如:
- 不要写“写一篇营销文案”,要写“你是一位资深的美妆营销文案师,擅长写小红书风格的内容”;
- 不要写“分析这个问题”,要写“你是一位有10年经验的软件工程师,擅长解决Python性能问题”。
准则2:用“具体”代替“模糊”
越具体的指令,AI的输出越符合预期。比如:
- 不要写“写一篇短文案”,要写“写一篇150字的抖音文案,用3个emoji,强调‘9.9元包邮’”;
- 不要写“分析用户评论”,要写“分析以下100条评论,总结出最常见的3个痛点,每个痛点配2条具体例子”。
准则3:加入“约束条件”
约束条件能避免AI输出“无用内容”。比如:
- 不要写“写一篇关于环保的文章”,要写“写一篇关于环保的文章,不要用专业术语,适合初中生理解”;
- 不要写“生成代码”,要写“生成Python代码,用Pandas库,解决‘合并两个Excel表格’的问题,代码要加注释”。
准则4:用“多轮交互”代替“一次性指令”
复杂问题需要“分步解决”。比如:
- 第一步:让AI生成“营销文案的大纲”;
- 第二步:根据大纲,让AI生成“具体的内容”;
- 第三步:让AI修改“内容中的口语化表达”。
准则5:用“示例”辅助说明
如果指令太抽象,可以用“示例”让AI更明白。比如:
“请生成类似以下风格的朋友圈文案:
示例:‘周末的上午,用一杯手冲咖啡唤醒自己——磨豆的声音像雨声,香气漫过指尖,这才是生活该有的样子~’
要求:写关于‘茶’的内容,强调‘仪式感’和‘治愈感’。”
2. 提示工程的4个“常见陷阱”
很多新手容易犯这些错误,一定要避开:
陷阱1:指令太“泛”
比如写“写一篇好文案”——“好”是模糊的,AI不知道“好”的标准是什么。正确的做法是把“好”拆解成“具体的要求”(比如“转化率高、口语化、有场景”)。
陷阱2:忽略“模型特性”
比如用Claude 3写“短文案”——Claude 3更擅长长文本,短文案的效果不如GPT-4。正确的做法是“根据模型的特点设计Prompt”。
陷阱3:没有“测试优化”
很多人写好Prompt就直接用,没有测试效果——结果输出质量差。正确的做法是“先小范围测试,再大规模使用”。
陷阱4:过度“复杂化”
比如写一个Prompt加了10个要求——AI会“混乱”,输出的内容反而不符合预期。正确的做法是“只保留核心要求,去掉不必要的约束”。
六、机遇与挑战:提示工程架构师的“未来画像”
1. 机遇:为什么这个岗位是“长期红利”?
机遇1:市场需求“爆发式增长”
根据猎聘网2024年Q1招聘数据:提示工程架构师的岗位需求同比增长350%,平均月薪从2023年的1.5万元涨到了2024年的2.5万元——头部企业(如阿里、腾讯)的月薪甚至达到4-5万元。
机遇2:“跨界人才”更吃香
提示工程架构师不需要“懂深度学习底层原理”,但需要“懂业务+懂AI”——比如:
- 懂营销的人,能做“营销Prompt设计”;
- 懂医疗的人,能做“医疗Prompt设计”;
- 懂法律的人,能做“法律Prompt设计”。
这些“跨界人才”比“纯技术人才”更稀缺,因为他们能“把业务需求翻译成AI能理解的指令”。
机遇3:创业机会多
提示设计的创业方向有很多:
- Prompt服务公司:帮企业定制Prompt系统(比如上文提到的零售企业案例);
- Prompt marketplace:让用户买卖优质Prompt(比如PromptBase);
- Prompt工具:比如Prompt优化工具、Prompt管理平台(比如LlamaIndex);
- 垂直领域Prompt:比如医疗、法律的专业Prompt(比如辅助诊断的Prompt)。
2. 挑战:这个岗位的“门槛”在哪里?
挑战1:技术更新“太快”
大模型的迭代速度很快——比如2023年GPT-4的上下文窗口是8k tokens,2024年GPT-4 Turbo变成了128k tokens;2023年Claude 2的长文本处理能力是100k tokens,2024年Claude 3变成了200k tokens。提示工程架构师需要“持续学习”,才能跟上技术的变化。
挑战2:评估标准“模糊”
Prompt的效果很难“量化”——比如“营销文案的转化率”受很多因素影响(比如标题、图片、发布时间),不一定是Prompt的问题。提示工程架构师需要“用数据说话”,找到“Prompt影响效果的核心因素”。
挑战3:伦理风险“高”
Prompt设计不当可能导致AI生成“有害内容”——比如:
- 用“歧视性语言”(比如“女性不适合做程序员”);
- 传播“虚假信息”(比如“这款产品能治愈癌症”);
- 泄露“用户隐私”(比如“把用户的姓名、电话写进回复”)。
提示工程架构师需要“有伦理意识”,设计Prompt时要规避这些风险。
七、结论:未来10年,“懂AI怎么想”的人最值钱
1. 核心要点回顾
- 提示设计是“把人类意图翻译成AI能理解的指令”,是AI时代的“新基建”;
- 提示工程是“系统级的提示设计方法论”,解决“复杂场景下的AI输出问题”;
- 提示工程架构师需要具备“大模型理解、场景化设计、多轮交互、数据驱动、跨领域沟通”5项能力;
- 市场潜力:2026年全球市场规模将达到120亿美元,3年增长10倍;
- 机遇挑战:需求爆发、跨界吃香,但需要应对技术更新、评估模糊、伦理风险。
2. 未来展望:提示工程的“进化方向”
未来,提示工程会向两个方向进化:
- 自动化:比如出现“Prompt生成AI”,能根据业务需求自动生成Prompt(比如输入“我要做一个AI客服”,AI自动生成对应的Prompt系统);
- 智能化:比如“自适应Prompt”,能根据用户的反馈自动调整(比如用户说“这个回复太生硬”,AI自动修改Prompt的语气)。
但无论技术怎么进化,“人类的业务理解能力”永远不可替代——因为AI不懂“用户的真实痛点”,不懂“企业的商业目标”,不懂“行业的专业知识”。
3. 行动号召:从“尝试”到“专业”
如果你想进入提示工程领域,从以下3件事开始:
- 做一个“Prompt实验”:比如设计一个“让AI写朋友圈文案”的Prompt,测试效果,然后优化;
- 学一门“业务知识”:比如学营销、学医疗、学法律,成为“跨界人才”;
- 加入“社区”:比如加入Prompt工程的微信群、知乎圈子,跟同行交流经验。
最后,我想对你说:AI时代,最值钱的不是“会用AI的人”,而是“能让AI为自己所用的人”。提示工程架构师,就是这样的人——他们用“提示设计”把AI的能力变成了企业的业绩,变成了自己的价值。
你准备好成为这样的人了吗?
欢迎在评论区分享你的“Prompt设计经验”,或者提出你的疑问——我们一起讨论!
延伸阅读资源:
- OpenAI《Prompt Engineering Guide》:https://platform.openai.com/docs/guides/prompt-engineering
- Anthropic《Claude Prompt Best Practices》:https://docs.anthropic.com/claude/docs/prompt-best-practices
- 《生成式AI提示工程实战》(书籍):作者王作冰,讲解Prompt设计的实战技巧;
- PromptBase(平台):https://promptbase.com/,可以买卖优质Prompt。