提示工程架构师实战:某AI提示系统SQL优化全复盘——从卡顿到5秒到丝滑200毫秒的10步破局
关键词:提示工程、SQL优化、慢查询分析、索引设计、缓存策略、执行计划、AI系统性能、实战复盘
摘要:本文以某企业级AI提示系统的SQL优化项目为背景,从“用户投诉响应慢”的痛点出发,还原从问题诊断到落地优化的全流程:通过慢查询日志定位核心瓶颈、用EXPLAIN
解析执行计划、设计场景化索引、重构缓存策略等10步操作,将系统平均响应时间从5.2秒压缩至180毫秒,数据库CPU占用从82%降至45%,同时支持并发量提升3倍。结合提示工程的“上下文依赖、高频检索”特性,分享**“业务场景+SQL优化”的融合方法论**——不是为了“优化SQL”而优化,而是为了“让AI提示更丝滑”而优化。
一、背景介绍:从“好用的AI”到“卡到崩溃的AI”
1.1 项目背景:我们在做什么?
这是一个为企业客服部门设计的AI提示系统——简单说,当客服和用户对话时,系统会自动分析历史聊天记录、用户画像、产品知识库,实时生成“建议回复”(比如“用户问退货政策,建议回复A话术+链接B”)。
系统的核心流程是:
- 接收客服的对话上下文(用户ID、会话ID、最新消息);
- 从数据库查询用户历史对话(近30条)、用户画像